|
import gradio as gr |
|
import requests |
|
import json |
|
import huggingface_hub |
|
from huggingface_hub import HfApi |
|
from gradio_client import Client |
|
import os |
|
|
|
HF_TOKEN = os.environ["HF_TOKEN"] |
|
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"} |
|
|
|
tulu = "https://tonic1-tulu.hf.space/--replicas/kzf7f/" |
|
|
|
|
|
welcome_message = """ |
|
Hi! I'm using [Tulu from AlenAi](https://huggingface.co/spaces/Tonic1/Tulu) I'll help you **build a GPT**. You can say something like, "make a bot that gives advice on how to grow your startup." |
|
|
|
What would you like to make? |
|
""" |
|
|
|
welcome_preview_message = """ |
|
Welcome to **{}**! Say something like: |
|
"{}" |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
system_prompt = """ |
|
I an AI whose job it is to help users create their own chatbots. In particular, I respond using titles and subtiles in a friendly tone, write a system prompt for an LLM, a catchy title for the chatbot, and a very short example user input. I make sure each part is included. |
|
I only respond in the following format : |
|
# Title: |
|
# System prompt: |
|
# Example input: |
|
<|user|> |
|
"make a bot that gives advice on how to grow your startup", |
|
|
|
<|assistant|> |
|
I first do a friendly response, then I add the title, system prompt, and example user input. I Immediately STOP after the example input. It should be EXACTLY in this format: |
|
|
|
Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback! |
|
# Title: Startup Coach |
|
# System prompt: Your job as an LLM is to provide good startup advice. Do not provide extraneous comments on other topics. Be succinct but useful. |
|
# Example input: Risks of setting up a non-profit board |
|
|
|
<|user|> |
|
Make a chatbot that roasts tech ceos |
|
|
|
<|assistant|> |
|
Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback! |
|
# Title: Tech Roaster |
|
# System prompt: As an LLM, your primary function is to deliver hilarious and biting critiques of technology CEOs. Keep it witty and entertaining, but also make sure your jokes aren't too mean-spirited or factually incorrect. |
|
# Example input: Elon Musk |
|
|
|
<|user|> |
|
Make an app that producesses assessments |
|
|
|
<|assistant|> |
|
Sure, I'd be happy to help you build an app! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback! |
|
# Title: Assessment Genius |
|
# System prompt: Your app's primary function is to provide assessments for users. These assessments should be relevant, useful, and accurate. Keep in mind that the app should be user-friendly and easy to navigate. |
|
# Example input: Personality Assessment |
|
|
|
|
|
<|user|> |
|
make a gpt that helps to create mutants and masterminds characters |
|
|
|
<|assistant|> |
|
Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback! |
|
# Title: Mutants and Masterminds Character Creator |
|
# System prompt: As an LLM, your job is to help users create characters for the Mutants and Masterminds tabletop RPG. Your prompts should be clear and concise, and should help users make characters that are both fun and balanced. |
|
# Example input: Create a character with the Power Level 10 |
|
""" |
|
|
|
def predict_beta(message, chatbot=[], system_prompt=system_prompt, max_new_tokens=650, temperature=0.4, top_p=0.90, repetition_penalty=0.90, advanced=True): |
|
client = Client(tulu) |
|
try: |
|
result = client.predict( |
|
message, |
|
system_prompt, |
|
max_new_tokens, |
|
temperature, |
|
top_p, |
|
repetition_penalty, |
|
advanced, |
|
fn_index=0 |
|
) |
|
print("Raw API Response:", result) |
|
if result is not None: |
|
print("Processed bot_message:", result) |
|
return result |
|
else: |
|
print("No response or empty response from the model.") |
|
return None |
|
|
|
except Exception as e: |
|
error_msg = f"An error occurred: {str(e)}" |
|
print(error_msg) |
|
return None |
|
|
|
def extract_title_prompt_example(text): |
|
default_title = "Custom GPT Agent" |
|
default_system_prompt = "This is a custom GPT agent." |
|
default_example_input = "Type your query here." |
|
|
|
|
|
lines = text.split('\n') |
|
lines.reverse() |
|
|
|
title = default_title |
|
system_prompt = default_system_prompt |
|
example_input = default_example_input |
|
|
|
|
|
found_title, found_prompt, found_example = False, False, False |
|
|
|
for line in lines: |
|
if not found_example and line.startswith("# Example input:"): |
|
example_input = line.replace("# Example input:", "").strip() |
|
found_example = True |
|
elif not found_prompt and line.startswith("# System prompt:"): |
|
system_prompt = line.replace("# System prompt:", "").strip() |
|
found_prompt = True |
|
elif not found_title and line.startswith("# Title:"): |
|
title = line.replace("# Title:", "").strip() |
|
found_title = True |
|
|
|
|
|
if found_title and found_prompt and found_example: |
|
break |
|
|
|
return text, title, system_prompt, example_input |
|
|
|
def make_open_gpt(message, history, current_title, current_system_prompt, current_example_input, system_prompt=system_prompt): |
|
try: |
|
response = predict_beta(message, history, system_prompt) |
|
if not response: |
|
raise ValueError("Empty response from predict_beta") |
|
print("Response from predict_beta:", response) |
|
except Exception as e: |
|
response = f"Error in predict_beta: {str(e)}" |
|
print("Error in predict_beta:", response) |
|
|
|
title = "Error" |
|
system_prompt = "Error in predict_beta" |
|
example_input = "Error" |
|
else: |
|
try: |
|
_, title, system_prompt, example_input = extract_title_prompt_example(response) |
|
except Exception as e: |
|
title = "Error" |
|
system_prompt = "Error in extraction" |
|
example_input = "Error" |
|
print(f"Error in extract_title_prompt_example: {str(e)}") |
|
|
|
|
|
return ( |
|
"", |
|
history + [(message, response)], |
|
title or current_title, |
|
system_prompt or current_system_prompt, |
|
example_input or current_example_input, |
|
[(None, welcome_preview_message.format(title or current_title, example_input or current_example_input))], |
|
example_input or current_example_input, |
|
gr.Column(visible=True), |
|
gr.Group(visible=True) |
|
) |
|
|
|
|
|
def set_title_example(title, example): |
|
return [(None, welcome_preview_message.format(title, example))], example, gr.Column(visible=True), gr.Group(visible=True) |
|
|
|
chatbot_preview = gr.Chatbot(layout="panel") |
|
textbox_preview = gr.Textbox(scale=7, container=False) |
|
|
|
def test_preview_chatbot(message, history, system_prompt): |
|
response = predict_beta(message, history, system_prompt) |
|
return response |
|
|
|
|
|
def strip_invalid_filename_characters(filename: str, max_bytes: int = 200) -> str: |
|
"""Strips invalid characters from a filename and ensures that the file_length is less than `max_bytes` bytes.""" |
|
filename = filename.replace(" ", "-") |
|
filename = "".join([char for char in filename if char.isalnum() or char in "_-"]) |
|
filename_len = len(filename.encode()) |
|
if filename_len > max_bytes: |
|
while filename_len > max_bytes: |
|
if len(filename) == 0: |
|
break |
|
filename = filename[:-1] |
|
filename_len = len(filename.encode()) |
|
return filename |
|
|
|
|
|
constants = """ |
|
SYSTEM_PROMPT = "{}" |
|
TITLE = "{}" |
|
EXAMPLE_INPUT = "{}" |
|
""" |
|
|
|
|
|
def publish(textbox_system_prompt, textbox_title, textbox_example, textbox_token): |
|
source_file = 'app_template.py' |
|
destination_file = 'app.py' |
|
constants_formatted = constants.format(textbox_system_prompt, textbox_title, textbox_example) |
|
with open(source_file, 'r') as file: |
|
original_content = file.read() |
|
with open(destination_file, 'w') as file: |
|
file.write(constants_formatted + original_content) |
|
title = strip_invalid_filename_characters(textbox_title, max_bytes=30) |
|
api = HfApi(token=textbox_token) |
|
new_space = api.create_repo( |
|
repo_id=f"open-gpt-{title}", |
|
repo_type="space", |
|
exist_ok=True, |
|
private=False, |
|
space_sdk="gradio", |
|
token=textbox_token, |
|
) |
|
api.upload_file( |
|
repo_id=new_space.repo_id, |
|
path_or_fileobj='app.py', |
|
path_in_repo='app.py', |
|
token=textbox_token, |
|
repo_type="space", |
|
) |
|
api.upload_file( |
|
repo_id=new_space.repo_id, |
|
path_or_fileobj='README_template.md', |
|
path_in_repo='README.md', |
|
token=textbox_token, |
|
repo_type="space", |
|
) |
|
huggingface_hub.add_space_secret( |
|
new_space.repo_id, "HF_TOKEN", textbox_token, token=textbox_token |
|
) |
|
|
|
return gr.Markdown(f"Published to https://huggingface.co/spaces/{new_space.repo_id} ✅", visible=True), gr.Button("Publish", interactive=True) |
|
|
|
|
|
css = """ |
|
#preview-tab-button{ |
|
font-weight: bold; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(""" # 👋🏻Welcome to 🕵🏻♂️Agent🌷Tulu |
|
**A🕵🏻♂️Agent🌷Tulu** lets you create your own **open-source GPTs** using [allenai/tulu-2-dpo-13b](https://huggingface.co/allenai/tulu-2-dpo-13b). Start chatting to automatically below to automatically bake your GPT (or you can manually configure the recipe in the second tab). You can build and test them for free & publish them on Spaces (as Open GPTs are powered by the [Tulu DPO model](https://huggingface.co/allenai/tulu-2-dpo-70b) ). |
|
You think this is cool + want to make your own ? check out [GPTBaker](https://huggingface.co/abidlabs/GPT-Baker) from [AbidLabs](https://huggingface.co/abidlabs) of 🤗[Gradio](https://www.gradio.app/) |
|
### Join us: |
|
TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/GWpVpekp) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) """ |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
with gr.Tab("Create"): |
|
chatbot_maker = gr.Chatbot([(None, welcome_message)], layout="panel", elem_id="chatbot-maker") |
|
with gr.Group(): |
|
with gr.Row(): |
|
textbox_maker = gr.Textbox(placeholder="Make a bot that roasts tech CEOs", scale=7, container=False, autofocus=True) |
|
submit_btn = gr.Button("Bake 👩🍳", variant="secondary") |
|
with gr.Tab("Configure Recipe"): |
|
textbox_title = gr.Textbox("GPT Preview", label="Title") |
|
textbox_system_prompt = gr.Textbox(label="System prompt", lines=6) |
|
textbox_example = gr.Textbox(label="Placeholder example", lines=2) |
|
with gr.Tab("Files"): |
|
gr.Markdown("RAG coming soon!") |
|
with gr.Column(visible=False, scale=5) as preview_column: |
|
with gr.Tab("🪄 Preview of your Open GPT", elem_id="preview-tab") as preview_tab: |
|
gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview, autofocus=False, submit_btn="Test", additional_inputs=[textbox_system_prompt]) |
|
with gr.Group(visible=False) as publish_row: |
|
with gr.Row(): |
|
textbox_token = gr.Textbox(show_label=False, placeholder="Ready to publish to Spaces? Enter your HF token here", scale=7) |
|
publish_btn = gr.Button("Publish", variant="primary") |
|
|
|
published_status = gr.Markdown(visible=False) |
|
|
|
gr.on([submit_btn.click, textbox_maker.submit], make_open_gpt, [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example], [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example, chatbot_preview, textbox_preview, preview_column, publish_row]) |
|
gr.on([textbox_title.blur, textbox_example.blur], set_title_example, [textbox_title, textbox_example], [chatbot_preview, textbox_preview, preview_column, publish_row]) |
|
|
|
publish_btn.click(lambda : gr.Button("Publishing...", interactive=False), None, publish_btn).then(publish, [textbox_system_prompt, textbox_title, textbox_example, textbox_token], [published_status, publish_btn]) |
|
|
|
demo.launch() |