|
import gradio as gr |
|
import os |
|
import requests |
|
|
|
tulu = "https://tonic1-tulu.hf.space/--replicas/9sffh/" |
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"} |
|
|
|
def build_input_prompt(message, chatbot, system_prompt): |
|
""" |
|
Constructs the input prompt string from the chatbot interactions and the current message. |
|
""" |
|
input_prompt = "<|system|>\n" + system_prompt + "</s>\n<|user|>\n" |
|
for interaction in chatbot: |
|
input_prompt = input_prompt + str(interaction[0]) + "</s>\n<|assistant|>\n" + str(interaction[1]) + "\n</s>\n<|user|>\n" |
|
|
|
input_prompt = input_prompt + str(message) + "</s>\n<|assistant|>" |
|
return input_prompt |
|
|
|
|
|
def post_request_beta(payload): |
|
""" |
|
Sends a POST request to the predefined Tulu URL and returns the JSON response. |
|
""" |
|
response = requests.post(tulu, headers=HEADERS, json=payload) |
|
response.raise_for_status() |
|
return response.json() |
|
|
|
|
|
def predict_beta(message, chatbot=[], system_prompt=""): |
|
input_prompt = build_input_prompt(message, chatbot, system_prompt) |
|
data = { |
|
"inputs": input_prompt |
|
} |
|
|
|
try: |
|
response_data = post_request_beta(data) |
|
json_obj = response_data[0] |
|
|
|
if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0: |
|
bot_message = json_obj['generated_text'] |
|
return bot_message |
|
elif 'error' in json_obj: |
|
raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt') |
|
else: |
|
warning_msg = f"Unexpected response: {json_obj}" |
|
raise gr.Error(warning_msg) |
|
except requests.HTTPError as e: |
|
error_msg = f"Request failed with status code {e.response.status_code}" |
|
raise gr.Error(error_msg) |
|
except json.JSONDecodeError as e: |
|
error_msg = f"Failed to decode response as JSON: {str(e)}" |
|
raise gr.Error(error_msg) |
|
|
|
def test_preview_chatbot(message, history): |
|
response = predict_beta(message, history, SYSTEM_PROMPT) |
|
text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>") |
|
response = response[text_start:] |
|
return response |
|
|
|
|
|
welcome_preview_message = f""" |
|
Welcome to **{TITLE}**! Say something like: |
|
|
|
"{EXAMPLE_INPUT}" |
|
""" |
|
|
|
chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)]) |
|
textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT) |
|
|
|
demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview) |
|
|
|
demo.launch() |