Spaces:
Paused
Paused
Commit
·
8083005
1
Parent(s):
c066c5b
Added double init, for embedding and chat models at the same time.
Browse files- main/api.py +61 -24
- main/app.py +0 -1
- main/routes.py +64 -35
main/api.py
CHANGED
@@ -17,9 +17,13 @@ class LLMApi:
|
|
17 |
self.models_path = self.base_path / config["folders"]["models"]
|
18 |
self.cache_path = self.base_path / config["folders"]["cache"]
|
19 |
|
20 |
-
|
21 |
-
self.
|
|
|
|
|
|
|
22 |
self.tokenizer = None
|
|
|
23 |
|
24 |
# Generation parameters from config
|
25 |
gen_config = config["model"]["generation"]
|
@@ -64,7 +68,7 @@ class LLMApi:
|
|
64 |
|
65 |
# Download and save tokenizer
|
66 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
67 |
-
self.logger.info(f"
|
68 |
self.logger.disable_stream_to_logger()
|
69 |
|
70 |
self.logger.info(f"Saving model to {model_path}")
|
@@ -78,14 +82,14 @@ class LLMApi:
|
|
78 |
|
79 |
def initialize_model(self, model_name: str) -> None:
|
80 |
"""
|
81 |
-
Initialize a model and tokenizer
|
82 |
|
83 |
Args:
|
84 |
model_name: The name of the model to initialize
|
85 |
"""
|
86 |
-
self.logger.info(f"Initializing model: {model_name}")
|
87 |
try:
|
88 |
-
self.
|
89 |
local_model_path = self.models_path / model_name.split('/')[-1]
|
90 |
|
91 |
# Check if model exists locally
|
@@ -96,7 +100,7 @@ class LLMApi:
|
|
96 |
self.logger.info(f"Loading model from source: {model_name}")
|
97 |
model_path = model_name
|
98 |
|
99 |
-
self.
|
100 |
model_path,
|
101 |
device_map="auto",
|
102 |
load_in_8bit=True,
|
@@ -108,9 +112,42 @@ class LLMApi:
|
|
108 |
self.generation_config["eos_token_id"] = self.tokenizer.eos_token_id
|
109 |
self.generation_config["pad_token_id"] = self.tokenizer.eos_token_id
|
110 |
|
111 |
-
self.logger.info(f"Successfully initialized model: {model_name}")
|
112 |
except Exception as e:
|
113 |
-
self.logger.error(f"Failed to initialize model {model_name}: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
raise
|
115 |
|
116 |
def has_chat_template(self) -> bool:
|
@@ -158,22 +195,22 @@ class LLMApi:
|
|
158 |
"""
|
159 |
self.logger.debug(f"Generating response for prompt: {prompt[:50]}...")
|
160 |
|
161 |
-
if self.
|
162 |
-
raise RuntimeError("
|
163 |
|
164 |
try:
|
165 |
text = self._prepare_prompt(prompt, system_message)
|
166 |
inputs = self.tokenizer([text], return_tensors="pt")
|
167 |
|
168 |
# Remove token_type_ids if present
|
169 |
-
model_inputs = {k: v.to(self.
|
170 |
if k != 'token_type_ids'}
|
171 |
|
172 |
generation_config = self.generation_config.copy()
|
173 |
if max_new_tokens:
|
174 |
generation_config["max_new_tokens"] = max_new_tokens
|
175 |
|
176 |
-
generated_ids = self.
|
177 |
**model_inputs,
|
178 |
**generation_config
|
179 |
)
|
@@ -202,15 +239,15 @@ class LLMApi:
|
|
202 |
"""
|
203 |
self.logger.debug(f"Starting streaming generation for prompt: {prompt[:50]}...")
|
204 |
|
205 |
-
if self.
|
206 |
-
raise RuntimeError("
|
207 |
|
208 |
try:
|
209 |
text = self._prepare_prompt(prompt, system_message)
|
210 |
inputs = self.tokenizer([text], return_tensors="pt")
|
211 |
|
212 |
# Remove token_type_ids if present
|
213 |
-
model_inputs = {k: v.to(self.
|
214 |
if k != 'token_type_ids'}
|
215 |
|
216 |
# Configure generation
|
@@ -227,7 +264,7 @@ class LLMApi:
|
|
227 |
)
|
228 |
|
229 |
# Create a thread to run the generation
|
230 |
-
thread = Thread(target=self.
|
231 |
thread.start()
|
232 |
|
233 |
# Yield the generated text in chunks
|
@@ -241,21 +278,21 @@ class LLMApi:
|
|
241 |
|
242 |
def generate_embedding(self, text: str) -> List[float]:
|
243 |
"""
|
244 |
-
Generate a single embedding vector for a chunk of text.
|
245 |
Returns a list of floats representing the text embedding.
|
246 |
"""
|
247 |
self.logger.debug(f"Generating embedding for text: {text[:50]}...")
|
248 |
|
249 |
-
if self.
|
250 |
-
raise RuntimeError("
|
251 |
|
252 |
try:
|
253 |
# Tokenize the input text and ensure input_ids are Long type
|
254 |
-
inputs = self.
|
255 |
-
input_ids = inputs.input_ids.to(dtype=torch.long, device=self.
|
256 |
|
257 |
# Get the model's dtype from its parameters for the attention mask
|
258 |
-
model_dtype = next(self.
|
259 |
|
260 |
# Create an attention mask with matching dtype
|
261 |
attention_mask = torch.zeros(
|
@@ -269,7 +306,7 @@ class LLMApi:
|
|
269 |
|
270 |
# Get model outputs
|
271 |
with torch.no_grad():
|
272 |
-
outputs = self.
|
273 |
input_ids=input_ids,
|
274 |
attention_mask=attention_mask,
|
275 |
output_hidden_states=True,
|
|
|
17 |
self.models_path = self.base_path / config["folders"]["models"]
|
18 |
self.cache_path = self.base_path / config["folders"]["cache"]
|
19 |
|
20 |
+
# Initialize model variables for both generation and embedding
|
21 |
+
self.generation_model = None
|
22 |
+
self.generation_model_name = None
|
23 |
+
self.embedding_model = None
|
24 |
+
self.embedding_model_name = None
|
25 |
self.tokenizer = None
|
26 |
+
self.embedding_tokenizer = None
|
27 |
|
28 |
# Generation parameters from config
|
29 |
gen_config = config["model"]["generation"]
|
|
|
68 |
|
69 |
# Download and save tokenizer
|
70 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
71 |
+
self.logger.info(f"Disabling stdout logging")
|
72 |
self.logger.disable_stream_to_logger()
|
73 |
|
74 |
self.logger.info(f"Saving model to {model_path}")
|
|
|
82 |
|
83 |
def initialize_model(self, model_name: str) -> None:
|
84 |
"""
|
85 |
+
Initialize a model and tokenizer for text generation.
|
86 |
|
87 |
Args:
|
88 |
model_name: The name of the model to initialize
|
89 |
"""
|
90 |
+
self.logger.info(f"Initializing generation model: {model_name}")
|
91 |
try:
|
92 |
+
self.generation_model_name = model_name
|
93 |
local_model_path = self.models_path / model_name.split('/')[-1]
|
94 |
|
95 |
# Check if model exists locally
|
|
|
100 |
self.logger.info(f"Loading model from source: {model_name}")
|
101 |
model_path = model_name
|
102 |
|
103 |
+
self.generation_model = AutoModelForCausalLM.from_pretrained(
|
104 |
model_path,
|
105 |
device_map="auto",
|
106 |
load_in_8bit=True,
|
|
|
112 |
self.generation_config["eos_token_id"] = self.tokenizer.eos_token_id
|
113 |
self.generation_config["pad_token_id"] = self.tokenizer.eos_token_id
|
114 |
|
115 |
+
self.logger.info(f"Successfully initialized generation model: {model_name}")
|
116 |
except Exception as e:
|
117 |
+
self.logger.error(f"Failed to initialize generation model {model_name}: {str(e)}")
|
118 |
+
raise
|
119 |
+
|
120 |
+
def initialize_embedding_model(self, model_name: str) -> None:
|
121 |
+
"""
|
122 |
+
Initialize a model and tokenizer specifically for embeddings.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
model_name: The name of the model to initialize for embeddings
|
126 |
+
"""
|
127 |
+
self.logger.info(f"Initializing embedding model: {model_name}")
|
128 |
+
try:
|
129 |
+
self.embedding_model_name = model_name
|
130 |
+
local_model_path = self.models_path / model_name.split('/')[-1]
|
131 |
+
|
132 |
+
# Check if model exists locally
|
133 |
+
if local_model_path.exists():
|
134 |
+
self.logger.info(f"Loading embedding model from local path: {local_model_path}")
|
135 |
+
model_path = local_model_path
|
136 |
+
else:
|
137 |
+
self.logger.info(f"Loading embedding model from source: {model_name}")
|
138 |
+
model_path = model_name
|
139 |
+
|
140 |
+
self.embedding_model = AutoModelForCausalLM.from_pretrained(
|
141 |
+
model_path,
|
142 |
+
device_map="auto",
|
143 |
+
load_in_8bit=True,
|
144 |
+
torch_dtype=torch.float16
|
145 |
+
)
|
146 |
+
self.embedding_tokenizer = AutoTokenizer.from_pretrained(model_path)
|
147 |
+
|
148 |
+
self.logger.info(f"Successfully initialized embedding model: {model_name}")
|
149 |
+
except Exception as e:
|
150 |
+
self.logger.error(f"Failed to initialize embedding model {model_name}: {str(e)}")
|
151 |
raise
|
152 |
|
153 |
def has_chat_template(self) -> bool:
|
|
|
195 |
"""
|
196 |
self.logger.debug(f"Generating response for prompt: {prompt[:50]}...")
|
197 |
|
198 |
+
if self.generation_model is None:
|
199 |
+
raise RuntimeError("Generation model not initialized. Call initialize_model first.")
|
200 |
|
201 |
try:
|
202 |
text = self._prepare_prompt(prompt, system_message)
|
203 |
inputs = self.tokenizer([text], return_tensors="pt")
|
204 |
|
205 |
# Remove token_type_ids if present
|
206 |
+
model_inputs = {k: v.to(self.generation_model.device) for k, v in inputs.items()
|
207 |
if k != 'token_type_ids'}
|
208 |
|
209 |
generation_config = self.generation_config.copy()
|
210 |
if max_new_tokens:
|
211 |
generation_config["max_new_tokens"] = max_new_tokens
|
212 |
|
213 |
+
generated_ids = self.generation_model.generate(
|
214 |
**model_inputs,
|
215 |
**generation_config
|
216 |
)
|
|
|
239 |
"""
|
240 |
self.logger.debug(f"Starting streaming generation for prompt: {prompt[:50]}...")
|
241 |
|
242 |
+
if self.generation_model is None:
|
243 |
+
raise RuntimeError("Generation model not initialized. Call initialize_model first.")
|
244 |
|
245 |
try:
|
246 |
text = self._prepare_prompt(prompt, system_message)
|
247 |
inputs = self.tokenizer([text], return_tensors="pt")
|
248 |
|
249 |
# Remove token_type_ids if present
|
250 |
+
model_inputs = {k: v.to(self.generation_model.device) for k, v in inputs.items()
|
251 |
if k != 'token_type_ids'}
|
252 |
|
253 |
# Configure generation
|
|
|
264 |
)
|
265 |
|
266 |
# Create a thread to run the generation
|
267 |
+
thread = Thread(target=self.generation_model.generate, kwargs=generation_kwargs)
|
268 |
thread.start()
|
269 |
|
270 |
# Yield the generated text in chunks
|
|
|
278 |
|
279 |
def generate_embedding(self, text: str) -> List[float]:
|
280 |
"""
|
281 |
+
Generate a single embedding vector for a chunk of text using the dedicated embedding model.
|
282 |
Returns a list of floats representing the text embedding.
|
283 |
"""
|
284 |
self.logger.debug(f"Generating embedding for text: {text[:50]}...")
|
285 |
|
286 |
+
if self.embedding_model is None or self.embedding_tokenizer is None:
|
287 |
+
raise RuntimeError("Embedding model not initialized. Call initialize_embedding_model first.")
|
288 |
|
289 |
try:
|
290 |
# Tokenize the input text and ensure input_ids are Long type
|
291 |
+
inputs = self.embedding_tokenizer(text, return_tensors='pt')
|
292 |
+
input_ids = inputs.input_ids.to(dtype=torch.long, device=self.embedding_model.device)
|
293 |
|
294 |
# Get the model's dtype from its parameters for the attention mask
|
295 |
+
model_dtype = next(self.embedding_model.parameters()).dtype
|
296 |
|
297 |
# Create an attention mask with matching dtype
|
298 |
attention_mask = torch.zeros(
|
|
|
306 |
|
307 |
# Get model outputs
|
308 |
with torch.no_grad():
|
309 |
+
outputs = self.embedding_model(
|
310 |
input_ids=input_ids,
|
311 |
attention_mask=attention_mask,
|
312 |
output_hidden_states=True,
|
main/app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import yaml
|
2 |
-
import sys
|
3 |
from fastapi import FastAPI
|
4 |
from fastapi.middleware.cors import CORSMiddleware
|
5 |
from .routes import router, init_router
|
|
|
1 |
import yaml
|
|
|
2 |
from fastapi import FastAPI
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from .routes import router, init_router
|
main/routes.py
CHANGED
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import APIRouter, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from typing import Optional, List, Dict, Union
|
@@ -51,12 +55,12 @@ class ValidationResponse(BaseModel):
|
|
51 |
@router.get("/system/validate",
|
52 |
response_model=ValidationResponse,
|
53 |
summary="Validate System Configuration",
|
54 |
-
description="Validates system configuration, folders, and model setup")
|
55 |
async def validate_system():
|
56 |
"""
|
57 |
Validates:
|
58 |
- Configuration parameters
|
59 |
-
- Model setup
|
60 |
- Folder structure
|
61 |
- Required permissions
|
62 |
"""
|
@@ -88,20 +92,31 @@ async def validate_system():
|
|
88 |
# Validate model setup
|
89 |
try:
|
90 |
model_status = {
|
91 |
-
"
|
92 |
-
"
|
|
|
|
|
93 |
"tokenizer_valid": False
|
94 |
}
|
95 |
|
96 |
-
if api.
|
97 |
-
|
98 |
-
model_status["
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
|
|
102 |
|
103 |
-
|
104 |
-
|
|
|
|
|
105 |
|
106 |
except Exception as e:
|
107 |
logger.error(f"Model validation failed: {str(e)}")
|
@@ -110,9 +125,12 @@ async def validate_system():
|
|
110 |
|
111 |
# Validate folder structure and permissions
|
112 |
try:
|
113 |
-
folder_status = {
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
116 |
|
117 |
# Test write permissions by attempting to create a test file
|
118 |
test_file = api.models_path / ".test_write"
|
@@ -148,7 +166,6 @@ async def validate_system():
|
|
148 |
logger.info(f"System validation completed with status: {overall_status}")
|
149 |
return validation_response
|
150 |
|
151 |
-
|
152 |
@router.get("/system/status",
|
153 |
response_model=SystemStatusResponse,
|
154 |
summary="Check System Status",
|
@@ -224,12 +241,16 @@ async def check_system():
|
|
224 |
|
225 |
# Check Model Status
|
226 |
try:
|
227 |
-
current_model_path = api.models_path / api.model_name.split('/')[-1] if api.model_name else None
|
228 |
status.model = {
|
229 |
-
"
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
233 |
}
|
234 |
logger.debug(f"Model status retrieved: {status.model}")
|
235 |
except Exception as e:
|
@@ -239,7 +260,6 @@ async def check_system():
|
|
239 |
logger.info("System status check completed")
|
240 |
return status
|
241 |
|
242 |
-
|
243 |
@router.post("/generate")
|
244 |
async def generate_text(request: GenerateRequest):
|
245 |
"""Generate text response from prompt"""
|
@@ -256,7 +276,6 @@ async def generate_text(request: GenerateRequest):
|
|
256 |
logger.error(f"Error in generate_text endpoint: {str(e)}")
|
257 |
raise HTTPException(status_code=500, detail=str(e))
|
258 |
|
259 |
-
|
260 |
@router.post("/generate/stream")
|
261 |
async def generate_stream(request: GenerateRequest):
|
262 |
"""Generate streaming text response from prompt"""
|
@@ -271,7 +290,6 @@ async def generate_stream(request: GenerateRequest):
|
|
271 |
logger.error(f"Error in generate_stream endpoint: {str(e)}")
|
272 |
raise HTTPException(status_code=500, detail=str(e))
|
273 |
|
274 |
-
|
275 |
@router.post("/embedding", response_model=EmbeddingResponse)
|
276 |
async def generate_embedding(request: EmbeddingRequest):
|
277 |
"""Generate embedding vector from text"""
|
@@ -287,7 +305,6 @@ async def generate_embedding(request: EmbeddingRequest):
|
|
287 |
logger.error(f"Error in generate_embedding endpoint: {str(e)}")
|
288 |
raise HTTPException(status_code=500, detail=str(e))
|
289 |
|
290 |
-
|
291 |
@router.post("/model/download",
|
292 |
summary="Download default or specified model",
|
293 |
description="Downloads model files. Uses default model from config if none specified.")
|
@@ -332,18 +349,30 @@ async def initialize_model(model_name: Optional[str] = None):
|
|
332 |
logger.error(f"Error initializing model: {str(e)}")
|
333 |
raise HTTPException(status_code=500, detail=str(e))
|
334 |
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
|
|
339 |
try:
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
}
|
345 |
-
logger.info(f"Retrieved model status: {status}")
|
346 |
-
return status
|
347 |
except Exception as e:
|
348 |
-
logger.error(f"Error
|
349 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
+
# routes.py for the LLM Engine.
|
2 |
+
# This file contains the FastAPI routes for the LLM Engine API.
|
3 |
+
# It includes routes for generating text, generating embeddings, checking system status, and validating system configuration.
|
4 |
+
|
5 |
from fastapi import APIRouter, HTTPException
|
6 |
from pydantic import BaseModel
|
7 |
from typing import Optional, List, Dict, Union
|
|
|
55 |
@router.get("/system/validate",
|
56 |
response_model=ValidationResponse,
|
57 |
summary="Validate System Configuration",
|
58 |
+
description="Validates system configuration, folders, and model setup for both generation and embedding models")
|
59 |
async def validate_system():
|
60 |
"""
|
61 |
Validates:
|
62 |
- Configuration parameters
|
63 |
+
- Model setup for both generation and embedding models
|
64 |
- Folder structure
|
65 |
- Required permissions
|
66 |
"""
|
|
|
92 |
# Validate model setup
|
93 |
try:
|
94 |
model_status = {
|
95 |
+
"generation_model_files_exist": False,
|
96 |
+
"generation_model_loadable": False,
|
97 |
+
"embedding_model_files_exist": False,
|
98 |
+
"embedding_model_loadable": False,
|
99 |
"tokenizer_valid": False
|
100 |
}
|
101 |
|
102 |
+
if api.generation_model_name:
|
103 |
+
gen_model_path = api.models_path / api.generation_model_name.split('/')[-1]
|
104 |
+
model_status["generation_model_files_exist"] = validate_model_path(gen_model_path)
|
105 |
+
model_status["generation_model_loadable"] = api.generation_model is not None
|
106 |
+
|
107 |
+
if api.embedding_model_name:
|
108 |
+
emb_model_path = api.models_path / api.embedding_model_name.split('/')[-1]
|
109 |
+
model_status["embedding_model_files_exist"] = validate_model_path(emb_model_path)
|
110 |
+
model_status["embedding_model_loadable"] = api.embedding_model is not None
|
111 |
|
112 |
+
model_status["tokenizer_valid"] = (
|
113 |
+
api.tokenizer is not None and api.embedding_tokenizer is not None
|
114 |
+
)
|
115 |
|
116 |
+
if not model_status["generation_model_files_exist"]:
|
117 |
+
issues.append("Generation model files are missing or incomplete")
|
118 |
+
if not model_status["embedding_model_files_exist"]:
|
119 |
+
issues.append("Embedding model files are missing or incomplete")
|
120 |
|
121 |
except Exception as e:
|
122 |
logger.error(f"Model validation failed: {str(e)}")
|
|
|
125 |
|
126 |
# Validate folder structure and permissions
|
127 |
try:
|
128 |
+
folder_status = {
|
129 |
+
"models_folder": api.models_path.exists(),
|
130 |
+
"cache_folder": api.cache_path.exists(),
|
131 |
+
"logs_folder": Path(api.base_path / "logs").exists(),
|
132 |
+
"write_permissions": False
|
133 |
+
}
|
134 |
|
135 |
# Test write permissions by attempting to create a test file
|
136 |
test_file = api.models_path / ".test_write"
|
|
|
166 |
logger.info(f"System validation completed with status: {overall_status}")
|
167 |
return validation_response
|
168 |
|
|
|
169 |
@router.get("/system/status",
|
170 |
response_model=SystemStatusResponse,
|
171 |
summary="Check System Status",
|
|
|
241 |
|
242 |
# Check Model Status
|
243 |
try:
|
|
|
244 |
status.model = {
|
245 |
+
"generation_model": {
|
246 |
+
"is_loaded": api.generation_model is not None,
|
247 |
+
"current_model": api.generation_model_name,
|
248 |
+
"has_chat_template": api.has_chat_template() if api.generation_model else False
|
249 |
+
},
|
250 |
+
"embedding_model": {
|
251 |
+
"is_loaded": api.embedding_model is not None,
|
252 |
+
"current_model": api.embedding_model_name
|
253 |
+
}
|
254 |
}
|
255 |
logger.debug(f"Model status retrieved: {status.model}")
|
256 |
except Exception as e:
|
|
|
260 |
logger.info("System status check completed")
|
261 |
return status
|
262 |
|
|
|
263 |
@router.post("/generate")
|
264 |
async def generate_text(request: GenerateRequest):
|
265 |
"""Generate text response from prompt"""
|
|
|
276 |
logger.error(f"Error in generate_text endpoint: {str(e)}")
|
277 |
raise HTTPException(status_code=500, detail=str(e))
|
278 |
|
|
|
279 |
@router.post("/generate/stream")
|
280 |
async def generate_stream(request: GenerateRequest):
|
281 |
"""Generate streaming text response from prompt"""
|
|
|
290 |
logger.error(f"Error in generate_stream endpoint: {str(e)}")
|
291 |
raise HTTPException(status_code=500, detail=str(e))
|
292 |
|
|
|
293 |
@router.post("/embedding", response_model=EmbeddingResponse)
|
294 |
async def generate_embedding(request: EmbeddingRequest):
|
295 |
"""Generate embedding vector from text"""
|
|
|
305 |
logger.error(f"Error in generate_embedding endpoint: {str(e)}")
|
306 |
raise HTTPException(status_code=500, detail=str(e))
|
307 |
|
|
|
308 |
@router.post("/model/download",
|
309 |
summary="Download default or specified model",
|
310 |
description="Downloads model files. Uses default model from config if none specified.")
|
|
|
349 |
logger.error(f"Error initializing model: {str(e)}")
|
350 |
raise HTTPException(status_code=500, detail=str(e))
|
351 |
|
352 |
+
@router.post("/model/initialize/embedding",
|
353 |
+
summary="Initialize embedding model",
|
354 |
+
description="Initialize a separate model specifically for generating embeddings")
|
355 |
+
async def initialize_embedding_model(model_name: Optional[str] = None):
|
356 |
+
"""Initialize a model specifically for embeddings"""
|
357 |
try:
|
358 |
+
# Use model name from config if none provided
|
359 |
+
embedding_model = model_name or config["model"]["defaults"].get("embedding_model_name")
|
360 |
+
if not embedding_model:
|
361 |
+
raise HTTPException(
|
362 |
+
status_code=400,
|
363 |
+
detail="No embedding model specified and no default found in config"
|
364 |
+
)
|
365 |
+
|
366 |
+
logger.info(f"Received request to initialize embedding model: {embedding_model}")
|
367 |
+
|
368 |
+
api.initialize_embedding_model(embedding_model)
|
369 |
+
logger.info(f"Successfully initialized embedding model: {embedding_model}")
|
370 |
+
|
371 |
+
return {
|
372 |
+
"status": "success",
|
373 |
+
"message": f"Embedding model {embedding_model} initialized",
|
374 |
+
"model_name": embedding_model
|
375 |
}
|
|
|
|
|
376 |
except Exception as e:
|
377 |
+
logger.error(f"Error initializing embedding model: {str(e)}")
|
378 |
raise HTTPException(status_code=500, detail=str(e))
|