Spaces:
Running
on
Zero
Running
on
Zero
from pathlib import Path | |
import gradio as gr | |
import pillow_heif | |
import spaces | |
import torch | |
from gradio_imageslider import ImageSlider | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
from refiners.fluxion.utils import manual_seed | |
from refiners.foundationals.latent_diffusion import Solver, solvers | |
from enhancer import ESRGANUpscaler, ESRGANUpscalerCheckpoints | |
pillow_heif.register_heif_opener() | |
pillow_heif.register_avif_opener() | |
TITLE = """ | |
<center> | |
<div style=" | |
background-color: #ff9100; | |
color: #1f2937; | |
padding: 0.5rem 1rem; | |
font-size: 1.25rem; | |
"> | |
🚀 For an optimized version of this space, try out the | |
<a href="https://finegrain.ai/editor?utm_source=hf&utm_campaign=image-enhancer" target="_blank">Finegrain Editor</a>! You'll find there all our AI tools made available in a nice UI. 🚀 | |
</div> | |
<h1 style="font-size: 1.5rem; margin-bottom: 0.5rem;"> | |
Image Enhancer Powered By Refiners | |
</h1> | |
<p> | |
Turn low resolution images into high resolution versions with added generated details (your image will be modified). | |
</p> | |
<p> | |
This space is powered by Refiners, our open source micro-framework for simple foundation model adaptation. | |
If you enjoyed it, please consider starring Refiners on GitHub! | |
</p> | |
<a href="https://github.com/finegrain-ai/refiners" target="_blank"> | |
<img src="https://img.shields.io/github/stars/finegrain-ai/refiners?style=social" /> | |
</a> | |
</center> | |
""" | |
CHECKPOINTS = ESRGANUpscalerCheckpoints( | |
unet=Path( | |
hf_hub_download( | |
repo_id="refiners/juggernaut.reborn.sd1_5.unet", | |
filename="model.safetensors", | |
revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2", | |
) | |
), | |
clip_text_encoder=Path( | |
hf_hub_download( | |
repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder", | |
filename="model.safetensors", | |
revision="744ad6a5c0437ec02ad826df9f6ede102bb27481", | |
) | |
), | |
lda=Path( | |
hf_hub_download( | |
repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder", | |
filename="model.safetensors", | |
revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19", | |
) | |
), | |
controlnet_tile=Path( | |
hf_hub_download( | |
repo_id="refiners/controlnet.sd1_5.tile", | |
filename="model.safetensors", | |
revision="48ced6ff8bfa873a8976fa467c3629a240643387", | |
) | |
), | |
esrgan=Path( | |
hf_hub_download( | |
repo_id="philz1337x/upscaler", | |
filename="4x-UltraSharp.pth", | |
revision="011deacac8270114eb7d2eeff4fe6fa9a837be70", | |
) | |
), | |
negative_embedding=Path( | |
hf_hub_download( | |
repo_id="philz1337x/embeddings", | |
filename="JuggernautNegative-neg.pt", | |
revision="203caa7e9cc2bc225031a4021f6ab1ded283454a", | |
) | |
), | |
negative_embedding_key="string_to_param.*", | |
loras={ | |
"more_details": Path( | |
hf_hub_download( | |
repo_id="philz1337x/loras", | |
filename="more_details.safetensors", | |
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e", | |
) | |
), | |
"sdxl_render": Path( | |
hf_hub_download( | |
repo_id="philz1337x/loras", | |
filename="SDXLrender_v2.0.safetensors", | |
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e", | |
) | |
), | |
}, | |
) | |
# initialize the enhancer, on the cpu | |
DEVICE_CPU = torch.device("cpu") | |
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32 | |
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE_CPU, dtype=DTYPE) | |
# "move" the enhancer to the gpu, this is handled by Zero GPU | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
enhancer.to(device=DEVICE, dtype=DTYPE) | |
def process( | |
input_image: Image.Image, | |
prompt: str = "masterpiece, best quality, highres", | |
negative_prompt: str = "worst quality, low quality, normal quality", | |
seed: int = 42, | |
upscale_factor: int = 2, | |
controlnet_scale: float = 0.6, | |
controlnet_decay: float = 1.0, | |
condition_scale: int = 6, | |
tile_width: int = 112, | |
tile_height: int = 144, | |
denoise_strength: float = 0.35, | |
num_inference_steps: int = 18, | |
solver: str = "DDIM", | |
) -> tuple[Image.Image, Image.Image]: | |
manual_seed(seed) | |
solver_type: type[Solver] = getattr(solvers, solver) | |
enhanced_image = enhancer.upscale( | |
image=input_image, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
upscale_factor=upscale_factor, | |
controlnet_scale=controlnet_scale, | |
controlnet_scale_decay=controlnet_decay, | |
condition_scale=condition_scale, | |
tile_size=(tile_height, tile_width), | |
denoise_strength=denoise_strength, | |
num_inference_steps=num_inference_steps, | |
loras_scale={"more_details": 0.5, "sdxl_render": 1.0}, | |
solver_type=solver_type, | |
) | |
return (input_image, enhanced_image) | |
with gr.Blocks() as demo: | |
gr.HTML(TITLE) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="Input Image") | |
run_button = gr.ClearButton(components=None, value="Enhance Image") | |
with gr.Column(): | |
output_slider = ImageSlider(label="Before / After") | |
run_button.add(output_slider) | |
with gr.Accordion("Advanced Options", open=False): | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="masterpiece, best quality, highres", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
placeholder="worst quality, low quality, normal quality", | |
) | |
seed = gr.Slider( | |
minimum=0, | |
maximum=10_000, | |
value=42, | |
step=1, | |
label="Seed", | |
) | |
upscale_factor = gr.Slider( | |
minimum=1, | |
maximum=4, | |
value=2, | |
step=0.2, | |
label="Upscale Factor", | |
) | |
controlnet_scale = gr.Slider( | |
minimum=0, | |
maximum=1.5, | |
value=0.6, | |
step=0.1, | |
label="ControlNet Scale", | |
) | |
controlnet_decay = gr.Slider( | |
minimum=0.5, | |
maximum=1, | |
value=1.0, | |
step=0.025, | |
label="ControlNet Scale Decay", | |
) | |
condition_scale = gr.Slider( | |
minimum=2, | |
maximum=20, | |
value=6, | |
step=1, | |
label="Condition Scale", | |
) | |
tile_width = gr.Slider( | |
minimum=64, | |
maximum=200, | |
value=112, | |
step=1, | |
label="Latent Tile Width", | |
) | |
tile_height = gr.Slider( | |
minimum=64, | |
maximum=200, | |
value=144, | |
step=1, | |
label="Latent Tile Height", | |
) | |
denoise_strength = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.35, | |
step=0.1, | |
label="Denoise Strength", | |
) | |
num_inference_steps = gr.Slider( | |
minimum=1, | |
maximum=30, | |
value=18, | |
step=1, | |
label="Number of Inference Steps", | |
) | |
solver = gr.Radio( | |
choices=["DDIM", "DPMSolver"], | |
value="DDIM", | |
label="Solver", | |
) | |
run_button.click( | |
fn=process, | |
inputs=[ | |
input_image, | |
prompt, | |
negative_prompt, | |
seed, | |
upscale_factor, | |
controlnet_scale, | |
controlnet_decay, | |
condition_scale, | |
tile_width, | |
tile_height, | |
denoise_strength, | |
num_inference_steps, | |
solver, | |
], | |
outputs=output_slider, | |
) | |
gr.Examples( | |
examples=[ | |
"examples/kara-eads-L7EwHkq1B2s-unsplash.jpg", | |
"examples/clarity_bird.webp", | |
"examples/edgar-infocus-gJH8AqpiSEU-unsplash.jpg", | |
"examples/jeremy-wallace-_XjW3oN8UOE-unsplash.jpg", | |
"examples/karina-vorozheeva-rW-I87aPY5Y-unsplash.jpg", | |
"examples/karographix-photography-hIaOPjYCEj4-unsplash.jpg", | |
"examples/melissa-walker-horn-gtDYwUIr9Vg-unsplash.jpg", | |
"examples/ryoji-iwata-X53e51WfjlE-unsplash.jpg", | |
"examples/tadeusz-lakota-jggQZkITXng-unsplash.jpg", | |
], | |
inputs=[input_image], | |
outputs=output_slider, | |
fn=process, | |
cache_examples="lazy", | |
run_on_click=False, | |
) | |
demo.launch(share=False) | |