HRM / models /sparse_embedding.py
imone's picture
Release
bd62227
from typing import Union
import torch
from torch import nn
import torch.distributed as dist
from torch.optim.optimizer import Optimizer, ParamsT
from models.common import trunc_normal_init_
class CastedSparseEmbedding(nn.Module):
def __init__(self, num_embeddings: int, embedding_dim: int, batch_size: int, init_std: float, cast_to: torch.dtype):
super().__init__()
self.cast_to = cast_to
# Real Weights
# Truncated LeCun normal init
self.weights = nn.Buffer(
trunc_normal_init_(torch.empty((num_embeddings, embedding_dim)), std=init_std), persistent=True
)
# Local weights and IDs
# Local embeddings, with gradient, not persistent
self.local_weights = nn.Buffer(torch.zeros(batch_size, embedding_dim, requires_grad=True), persistent=False)
# Local embedding IDs, not persistent
self.local_ids = nn.Buffer(torch.zeros(batch_size, dtype=torch.int32), persistent=False)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
if not self.training:
# Test mode, no gradient
return self.weights[inputs].to(self.cast_to)
# Training mode, fill puzzle embedding from weights
with torch.no_grad():
self.local_weights.copy_(self.weights[inputs])
self.local_ids.copy_(inputs)
return self.local_weights.to(self.cast_to)
class CastedSparseEmbeddingSignSGD_Distributed(Optimizer):
def __init__(
self,
params: ParamsT,
world_size: int,
lr: Union[float, torch.Tensor] = 1e-3,
weight_decay: float = 1e-2,
):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= weight_decay:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
defaults = dict(
lr=lr,
weight_decay=weight_decay,
world_size=world_size
)
super().__init__(params, defaults)
@torch.no_grad
def step(self, closure=None): # type: ignore
for group in self.param_groups:
# Find the sparse embedding weights
local_weights_grad = None
local_ids = None
weights = None
assert len(group["params"]) == 3
for p in group["params"]:
if p.requires_grad:
local_weights_grad = p.grad
elif p.ndim == 1:
local_ids = p
elif p.ndim == 2:
weights = p
else:
assert False
assert local_weights_grad is not None
assert local_ids is not None
assert weights is not None
# Apply SignSGD
# Adam β‰ˆ SignSGD if gradient is very sparse
_sparse_emb_signsgd_dist(
local_weights_grad,
local_ids,
weights,
lr=group["lr"],
weight_decay=group["weight_decay"],
world_size=group["world_size"]
)
def _sparse_emb_signsgd_dist(
local_weights_grad: torch.Tensor,
local_ids: torch.Tensor,
weights: torch.Tensor,
lr: float,
weight_decay: float,
world_size: int
) -> None:
N, D = local_weights_grad.shape
# All-gather
all_weights_grad = local_weights_grad
all_ids = local_ids
if world_size > 1:
all_weights_grad = torch.empty((world_size * N, D), dtype=local_weights_grad.dtype, device=local_weights_grad.device)
all_ids = torch.empty(world_size * N, dtype=local_ids.dtype, device=local_ids.device)
dist.all_gather_into_tensor(all_weights_grad, local_weights_grad)
dist.all_gather_into_tensor(all_ids, local_ids)
# Unique
grad_ids, inv = all_ids.unique(return_inverse=True)
grad = torch.zeros((grad_ids.shape[0], D), dtype=all_weights_grad.dtype, device=all_weights_grad.device)
grad.scatter_add_(0, inv.unsqueeze(-1).expand(-1, D), all_weights_grad)
# SignSGD with decoupled weight decay
p = weights[grad_ids]
p.mul_(1.0 - lr * weight_decay).add_(torch.sign(grad), alpha=-lr)
# Write updated slices back
weights[grad_ids] = p