HRM / models /layers.py
imone's picture
Update
171e2fc
from typing import Tuple
import torch
from torch import nn
import torch.nn.functional as F
try:
from flash_attn_interface import flash_attn_func # type: ignore[import]
except ImportError:
# Fallback to FlashAttention 2
from flash_attn import flash_attn_func # type: ignore[import]
from models.common import trunc_normal_init_
CosSin = Tuple[torch.Tensor, torch.Tensor]
def _find_multiple(a, b):
return (-(a // -b)) * b
def rotate_half(x: torch.Tensor):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
# q, k: [bs, seq_len, num_heads, head_dim]
# cos, sin: [seq_len, head_dim]
orig_dtype = q.dtype
q = q.to(cos.dtype)
k = k.to(cos.dtype)
q_embed = (q * cos.unsqueeze(-2)) + (rotate_half(q) * sin.unsqueeze(-2))
k_embed = (k * cos.unsqueeze(-2)) + (rotate_half(k) * sin.unsqueeze(-2))
return q_embed.to(orig_dtype), k_embed.to(orig_dtype)
class CastedLinear(nn.Module):
def __init__(self,
in_features: int,
out_features: int,
bias: bool):
super().__init__()
# Truncated LeCun normal init
self.weight = nn.Parameter(
trunc_normal_init_(torch.empty((out_features, in_features)), std=1.0 / (in_features ** 0.5))
)
self.bias = None
if bias:
# Zero init bias
self.bias = nn.Parameter(torch.zeros((out_features, )))
def forward(self, input: torch.Tensor) -> torch.Tensor:
return F.linear(input, self.weight.to(input.dtype), bias=self.bias.to(input.dtype) if self.bias is not None else None)
class CastedEmbedding(nn.Module):
def __init__(self,
num_embeddings: int,
embedding_dim: int,
init_std: float,
cast_to: torch.dtype):
super().__init__()
self.cast_to = cast_to
# Truncated LeCun normal init
self.embedding_weight = nn.Parameter(
trunc_normal_init_(torch.empty((num_embeddings, embedding_dim)), std=init_std)
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return F.embedding(input, self.embedding_weight.to(self.cast_to))
class RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings, base, device=None):
super().__init__()
# RoPE
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim))
t = torch.arange(max_position_embeddings, dtype=torch.float32, device=device)
freqs = torch.outer(t, inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.cos_cached = nn.Buffer(emb.cos(), persistent=False)
self.sin_cached = nn.Buffer(emb.sin(), persistent=False)
def forward(self):
return self.cos_cached, self.sin_cached
class Attention(nn.Module):
def __init__(self, hidden_size, head_dim, num_heads, num_key_value_heads, causal=False):
super().__init__()
self.hidden_size = hidden_size
self.head_dim = head_dim
self.output_size = head_dim * num_heads
self.num_heads = num_heads
self.num_key_value_heads = num_key_value_heads
self.causal = causal
self.qkv_proj = CastedLinear(self.hidden_size, (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, bias=False)
self.o_proj = CastedLinear(self.output_size, self.hidden_size, bias=False)
def forward(self, cos_sin: CosSin, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, seq_len, _ = hidden_states.shape
# hidden_states: [bs, seq_len, num_heads, head_dim]
qkv = self.qkv_proj(hidden_states)
# Split head
qkv = qkv.view(batch_size, seq_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
query = qkv[:, :, :self.num_heads]
key = qkv[:, :, self.num_heads: self.num_heads + self.num_key_value_heads]
value = qkv[:, :, self.num_heads + self.num_key_value_heads:]
# RoPE
if cos_sin is not None:
cos, sin = cos_sin
query, key = apply_rotary_pos_emb(query, key, cos, sin)
# flash attn
attn_output = flash_attn_func(q=query, k=key, v=value, causal=self.causal)
if isinstance(attn_output, tuple): # fa2 and fa3 compatibility
attn_output = attn_output[0]
# attn_output: [batch_size, num_heads, seq_len, head_dim]
attn_output = attn_output.view(batch_size, seq_len, self.output_size) # type: ignore
return self.o_proj(attn_output)
class SwiGLU(nn.Module):
def __init__(self, hidden_size: int, expansion: float):
super().__init__()
inter = _find_multiple(round(expansion * hidden_size * 2 / 3), 256)
self.gate_up_proj = CastedLinear(hidden_size, inter * 2, bias=False)
self.down_proj = CastedLinear(inter, hidden_size, bias=False)
def forward(self, x):
gate, up = self.gate_up_proj(x).chunk(2, dim=-1)
return self.down_proj(F.silu(gate) * up)
def rms_norm(hidden_states: torch.Tensor, variance_epsilon: float) -> torch.Tensor:
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.square().mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon)
return hidden_states.to(input_dtype)