Tokenizaminer / app.py
Taranosaurus's picture
Changed "Unknown Token" token to "Token 0"
507d429
raw
history blame
6.77 kB
from transformers import AutoTokenizer
import gradio as gr
import random
checkpoint = "dslim/bert-base-NER"
checkpoints = [
checkpoint,
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"microsoft/phi-2",
"openai/whisper-large-v3",
"NousResearch/Nous-Hermes-2-Yi-34B",
"bert-base-cased"
]
placeholder = "Type anything in this text box and hit Tokenize!"
sequences = [
"The quick brown 🦊 fox jumps over the lazy πŸ• dog!",
"How vexingly ⏩ quick daft πŸ¦“ zebras jump?",
"Pack my πŸ“¦ box with five dozen 🍷 liquor jugs.",
"The five πŸ₯Š boxing πŸ§™β€β™‚οΈ wizards jump quickly~",
"While making deep ⛏️ excavations we found some quaint bronze πŸ’ jewelry!",
"Whenever the 🦊 fox jumped, the 🐿️ squirrel gazed suspiciously...",
"We promptly πŸ§‘β€βš–οΈ judged antique ivory buckles for the next πŸ† prize."
]
def randomize_sequence():
return random.choice(sequences)
sequence = randomize_sequence
def load_vocab(target_model, current_model):
checkpoint = target_model
if target_model == current_model:
gr.Info(f"Tokenizer already loaded: {checkpoint}")
else:
load_tokenizer(checkpoint)
gr.Info(f"Tokenizer loaded: {checkpoint}")
vocab = dict(sorted(tokenizer.vocab.items(), key=lambda item: item[1]))
unk = next(iter(vocab))
vocab.pop(unk)
vocab_sorted = "\n".join(vocab)
vocab_size = len(vocab)
gr.Info(f"Tokenizer vocab size: {vocab_size}")
return checkpoint, vocab_size, unk, vocab_sorted
def load_tokenizer(checkpoint):
if not "tokenizer" in globals():
global tokenizer
if len(checkpoint) > 0:
try:
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
except Exception as error:
gr.Warning("Unexpected error!")
raise gr.Error(f"{error}")
else:
return ValueError("Tokenizer cannot be empty!")
def tokenize_er(checkpoint, sequence):
try:
load_tokenizer(checkpoint)
tokens = tokenizer.tokenize(sequence)
ids = tokenizer.convert_tokens_to_ids(tokens)
token_id_pair = []
if len(tokens) == len(ids):
for i in range(len(ids)):
token_id_pair.append([tokens[i],ids[i]])
return token_id_pair
except NameError:
gr.Warning("Select Tokenizer before sequencing.")
return [[None, None]]
except Exception as error:
gr.Warning("Unexpected error!")
raise gr.Error(f"{error}")
def de_tokenize_er(checkpoint, pairs):
try:
load_tokenizer(checkpoint)
tokens = []
ids = []
for row in pairs:
tokens.append(row[0])
try:
ids.append(int(row[1]))
except:
ids.append(0)
tokens_ids= tokenizer.convert_tokens_to_ids(tokens)
decoded_tokens = tokenizer.decode(tokens_ids)
decoded_ids = tokenizer.decode(ids)
return tokens_ids, decoded_tokens, decoded_ids
except NameError:
gr.Warning("Tokenize sequence before decoding.")
return None, None, None
except Exception as error:
gr.Warning("Unexpected error!")
raise gr.Error(f"{error}")
with gr.Blocks() as frontend:
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("# πŸ‡ Tokenizaminer\n### The Tokenizer Examiner, or the Tokeniza Miner... πŸ•΅οΈπŸ•³οΈ\nThe purpose of this tool is to examine the vocabulary and tokens of a models tokenizer and play with the results.\nNote how the Vocabulary ID lines up with the full Vocabulary index on the right ➑️\n\n⚠️ Loading the full vocabulary can take a few seconds and the browser might stutter.")
with gr.Row():
gr.Markdown("\n#### 1. Select Tokenizer\nSelect from the list or enter any model from πŸ€— Hugging Face Models, it will only download the Tokenizer data! Image models won't work here.")
with gr.Row():
input_checkpoint = gr.Dropdown(label="Tokenizer", choices=checkpoints, value=checkpoint, allow_custom_value=True, show_label=False, container=False)
#btn_load_vocab = gr.Button(value="Load Vocabulary")
with gr.Row():
gr.Markdown("\n#### 2. Sequence & Tokenize")
with gr.Row():
input_sequence = gr.TextArea(label="Sequence", value=sequence, placeholder=placeholder, lines=3, interactive=True, show_label=False, container=False)
with gr.Row():
btn_tokenize = gr.Button(value="Tokenize!")
btn_random_seq = gr.Button(value="Randomize!")
with gr.Row():
gr.Markdown("\n#### 3. Decode\nYou can select and edit each cell individually - then hit Decode!")
with gr.Row():
token_id_pair = gr.DataFrame(col_count=(2,"fixed"), headers=["Token","Vocabulary ID"], value=[[None,0]], type="array", datatype=["str", "number"], height=400, interactive=True)
with gr.Row():
btn_decode = gr.Button(value="Decode")
btn_clear_pairs = gr.ClearButton(value="Clear Token/IDs", components=[token_id_pair])
with gr.Row():
with gr.Column():
output_decoded_token_ids = gr.TextArea(label="Re-encoded Tokens", interactive=False)
output_decoded_tokens = gr.TextArea(label="Decoded Re-encoded Tokens", interactive=False)
with gr.Column():
output_decoded_ids = gr.TextArea(label="Decoded IDs", interactive=False)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### 🎲 Tokenizer Data")
output_checkpoint = gr.Textbox(visible=False)
output_vocab_count = gr.Number(label="Vocab Size", interactive=False)
output_token_zero = gr.Textbox(label="Token 0", interactive=False)
output_vocab = gr.Code(label="Vocabulary IDs")
input_checkpoint.change(fn=load_vocab, inputs=[input_checkpoint, output_checkpoint], outputs=[output_checkpoint, output_vocab_count, output_token_zero, output_vocab], queue=True)
btn_tokenize.click(fn=tokenize_er, inputs=[input_checkpoint, input_sequence], outputs=[token_id_pair], queue=True)
btn_random_seq.click(fn=randomize_sequence, inputs=[], outputs=[input_sequence])
btn_decode.click(fn=de_tokenize_er, inputs=[input_checkpoint, token_id_pair], outputs=[output_decoded_token_ids,output_decoded_tokens, output_decoded_ids], queue=True)
frontend.load(fn=load_vocab, inputs=[input_checkpoint, output_checkpoint], outputs=[output_checkpoint, output_vocab_count, output_token_zero, output_vocab], queue=True)
frontend.launch()