Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Conversion script for the Versatile Stable Diffusion checkpoints. """ | |
import argparse | |
from argparse import Namespace | |
import torch | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
CLIPVisionModelWithProjection, | |
) | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
UNet2DConditionModel, | |
VersatileDiffusionPipeline, | |
) | |
from diffusers.pipelines.versatile_diffusion.modeling_text_unet import UNetFlatConditionModel | |
SCHEDULER_CONFIG = Namespace( | |
**{ | |
"beta_linear_start": 0.00085, | |
"beta_linear_end": 0.012, | |
"timesteps": 1000, | |
"scale_factor": 0.18215, | |
} | |
) | |
IMAGE_UNET_CONFIG = Namespace( | |
**{ | |
"input_channels": 4, | |
"model_channels": 320, | |
"output_channels": 4, | |
"num_noattn_blocks": [2, 2, 2, 2], | |
"channel_mult": [1, 2, 4, 4], | |
"with_attn": [True, True, True, False], | |
"num_heads": 8, | |
"context_dim": 768, | |
"use_checkpoint": True, | |
} | |
) | |
TEXT_UNET_CONFIG = Namespace( | |
**{ | |
"input_channels": 768, | |
"model_channels": 320, | |
"output_channels": 768, | |
"num_noattn_blocks": [2, 2, 2, 2], | |
"channel_mult": [1, 2, 4, 4], | |
"second_dim": [4, 4, 4, 4], | |
"with_attn": [True, True, True, False], | |
"num_heads": 8, | |
"context_dim": 768, | |
"use_checkpoint": True, | |
} | |
) | |
AUTOENCODER_CONFIG = Namespace( | |
**{ | |
"double_z": True, | |
"z_channels": 4, | |
"resolution": 256, | |
"in_channels": 3, | |
"out_ch": 3, | |
"ch": 128, | |
"ch_mult": [1, 2, 4, 4], | |
"num_res_blocks": 2, | |
"attn_resolutions": [], | |
"dropout": 0.0, | |
} | |
) | |
def shave_segments(path, n_shave_prefix_segments=1): | |
""" | |
Removes segments. Positive values shave the first segments, negative shave the last segments. | |
""" | |
if n_shave_prefix_segments >= 0: | |
return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
else: | |
return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item.replace("in_layers.0", "norm1") | |
new_item = new_item.replace("in_layers.2", "conv1") | |
new_item = new_item.replace("out_layers.0", "norm2") | |
new_item = new_item.replace("out_layers.3", "conv2") | |
new_item = new_item.replace("emb_layers.1", "time_emb_proj") | |
new_item = new_item.replace("skip_connection", "conv_shortcut") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside resnets to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("nin_shortcut", "conv_shortcut") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_attention_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
# new_item = new_item.replace('norm.weight', 'group_norm.weight') | |
# new_item = new_item.replace('norm.bias', 'group_norm.bias') | |
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') | |
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') | |
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | |
""" | |
Updates paths inside attentions to the new naming scheme (local renaming) | |
""" | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("norm.weight", "group_norm.weight") | |
new_item = new_item.replace("norm.bias", "group_norm.bias") | |
new_item = new_item.replace("q.weight", "query.weight") | |
new_item = new_item.replace("q.bias", "query.bias") | |
new_item = new_item.replace("k.weight", "key.weight") | |
new_item = new_item.replace("k.bias", "key.bias") | |
new_item = new_item.replace("v.weight", "value.weight") | |
new_item = new_item.replace("v.bias", "value.bias") | |
new_item = new_item.replace("proj_out.weight", "proj_attn.weight") | |
new_item = new_item.replace("proj_out.bias", "proj_attn.bias") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def assign_to_checkpoint( | |
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None | |
): | |
""" | |
This does the final conversion step: take locally converted weights and apply a global renaming | |
to them. It splits attention layers, and takes into account additional replacements | |
that may arise. | |
Assigns the weights to the new checkpoint. | |
""" | |
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
# Splits the attention layers into three variables. | |
if attention_paths_to_split is not None: | |
for path, path_map in attention_paths_to_split.items(): | |
old_tensor = old_checkpoint[path] | |
channels = old_tensor.shape[0] // 3 | |
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 | |
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) | |
query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
checkpoint[path_map["query"]] = query.reshape(target_shape) | |
checkpoint[path_map["key"]] = key.reshape(target_shape) | |
checkpoint[path_map["value"]] = value.reshape(target_shape) | |
for path in paths: | |
new_path = path["new"] | |
# These have already been assigned | |
if attention_paths_to_split is not None and new_path in attention_paths_to_split: | |
continue | |
# Global renaming happens here | |
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") | |
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") | |
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") | |
if additional_replacements is not None: | |
for replacement in additional_replacements: | |
new_path = new_path.replace(replacement["old"], replacement["new"]) | |
# proj_attn.weight has to be converted from conv 1D to linear | |
if "proj_attn.weight" in new_path: | |
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] | |
elif path["old"] in old_checkpoint: | |
checkpoint[new_path] = old_checkpoint[path["old"]] | |
def conv_attn_to_linear(checkpoint): | |
keys = list(checkpoint.keys()) | |
attn_keys = ["query.weight", "key.weight", "value.weight"] | |
for key in keys: | |
if ".".join(key.split(".")[-2:]) in attn_keys: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
elif "proj_attn.weight" in key: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0] | |
def create_image_unet_diffusers_config(unet_params): | |
""" | |
Creates a config for the diffusers based on the config of the VD model. | |
""" | |
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] | |
down_block_types = [] | |
resolution = 1 | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnDownBlock2D" if unet_params.with_attn[i] else "DownBlock2D" | |
down_block_types.append(block_type) | |
if i != len(block_out_channels) - 1: | |
resolution *= 2 | |
up_block_types = [] | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnUpBlock2D" if unet_params.with_attn[-i - 1] else "UpBlock2D" | |
up_block_types.append(block_type) | |
resolution //= 2 | |
if not all(n == unet_params.num_noattn_blocks[0] for n in unet_params.num_noattn_blocks): | |
raise ValueError("Not all num_res_blocks are equal, which is not supported in this script.") | |
config = { | |
"sample_size": None, | |
"in_channels": unet_params.input_channels, | |
"out_channels": unet_params.output_channels, | |
"down_block_types": tuple(down_block_types), | |
"up_block_types": tuple(up_block_types), | |
"block_out_channels": tuple(block_out_channels), | |
"layers_per_block": unet_params.num_noattn_blocks[0], | |
"cross_attention_dim": unet_params.context_dim, | |
"attention_head_dim": unet_params.num_heads, | |
} | |
return config | |
def create_text_unet_diffusers_config(unet_params): | |
""" | |
Creates a config for the diffusers based on the config of the VD model. | |
""" | |
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] | |
down_block_types = [] | |
resolution = 1 | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnDownBlockFlat" if unet_params.with_attn[i] else "DownBlockFlat" | |
down_block_types.append(block_type) | |
if i != len(block_out_channels) - 1: | |
resolution *= 2 | |
up_block_types = [] | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnUpBlockFlat" if unet_params.with_attn[-i - 1] else "UpBlockFlat" | |
up_block_types.append(block_type) | |
resolution //= 2 | |
if not all(n == unet_params.num_noattn_blocks[0] for n in unet_params.num_noattn_blocks): | |
raise ValueError("Not all num_res_blocks are equal, which is not supported in this script.") | |
config = { | |
"sample_size": None, | |
"in_channels": (unet_params.input_channels, 1, 1), | |
"out_channels": (unet_params.output_channels, 1, 1), | |
"down_block_types": tuple(down_block_types), | |
"up_block_types": tuple(up_block_types), | |
"block_out_channels": tuple(block_out_channels), | |
"layers_per_block": unet_params.num_noattn_blocks[0], | |
"cross_attention_dim": unet_params.context_dim, | |
"attention_head_dim": unet_params.num_heads, | |
} | |
return config | |
def create_vae_diffusers_config(vae_params): | |
""" | |
Creates a config for the diffusers based on the config of the VD model. | |
""" | |
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] | |
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | |
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | |
config = { | |
"sample_size": vae_params.resolution, | |
"in_channels": vae_params.in_channels, | |
"out_channels": vae_params.out_ch, | |
"down_block_types": tuple(down_block_types), | |
"up_block_types": tuple(up_block_types), | |
"block_out_channels": tuple(block_out_channels), | |
"latent_channels": vae_params.z_channels, | |
"layers_per_block": vae_params.num_res_blocks, | |
} | |
return config | |
def create_diffusers_scheduler(original_config): | |
schedular = DDIMScheduler( | |
num_train_timesteps=original_config.model.params.timesteps, | |
beta_start=original_config.model.params.linear_start, | |
beta_end=original_config.model.params.linear_end, | |
beta_schedule="scaled_linear", | |
) | |
return schedular | |
def convert_vd_unet_checkpoint(checkpoint, config, unet_key, extract_ema=False): | |
""" | |
Takes a state dict and a config, and returns a converted checkpoint. | |
""" | |
# extract state_dict for UNet | |
unet_state_dict = {} | |
keys = list(checkpoint.keys()) | |
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA | |
if sum(k.startswith("model_ema") for k in keys) > 100: | |
print("Checkpoint has both EMA and non-EMA weights.") | |
if extract_ema: | |
print( | |
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" | |
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." | |
) | |
for key in keys: | |
if key.startswith("model.diffusion_model"): | |
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) | |
else: | |
print( | |
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" | |
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." | |
) | |
for key in keys: | |
if key.startswith(unet_key): | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) | |
new_checkpoint = {} | |
new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["model.diffusion_model.time_embed.0.weight"] | |
new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["model.diffusion_model.time_embed.0.bias"] | |
new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["model.diffusion_model.time_embed.2.weight"] | |
new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["model.diffusion_model.time_embed.2.bias"] | |
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] | |
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] | |
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] | |
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] | |
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] | |
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] | |
# Retrieves the keys for the input blocks only | |
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) | |
input_blocks = { | |
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] | |
for layer_id in range(num_input_blocks) | |
} | |
# Retrieves the keys for the middle blocks only | |
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) | |
middle_blocks = { | |
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] | |
for layer_id in range(num_middle_blocks) | |
} | |
# Retrieves the keys for the output blocks only | |
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) | |
output_blocks = { | |
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] | |
for layer_id in range(num_output_blocks) | |
} | |
for i in range(1, num_input_blocks): | |
block_id = (i - 1) // (config["layers_per_block"] + 1) | |
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
resnets = [ | |
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
] | |
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.op.weight" | |
) | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.op.bias" | |
) | |
elif f"input_blocks.{i}.0.weight" in unet_state_dict: | |
# text_unet uses linear layers in place of downsamplers | |
shape = unet_state_dict[f"input_blocks.{i}.0.weight"].shape | |
if shape[0] != shape[1]: | |
continue | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.weight"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.weight" | |
) | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.bias"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.bias" | |
) | |
paths = renew_resnet_paths(resnets) | |
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
if len(attentions): | |
paths = renew_attention_paths(attentions) | |
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
resnet_0 = middle_blocks[0] | |
attentions = middle_blocks[1] | |
resnet_1 = middle_blocks[2] | |
resnet_0_paths = renew_resnet_paths(resnet_0) | |
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) | |
resnet_1_paths = renew_resnet_paths(resnet_1) | |
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) | |
attentions_paths = renew_attention_paths(attentions) | |
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint( | |
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
for i in range(num_output_blocks): | |
block_id = i // (config["layers_per_block"] + 1) | |
layer_in_block_id = i % (config["layers_per_block"] + 1) | |
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] | |
output_block_list = {} | |
for layer in output_block_layers: | |
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) | |
if layer_id in output_block_list: | |
output_block_list[layer_id].append(layer_name) | |
else: | |
output_block_list[layer_id] = [layer_name] | |
if len(output_block_list) > 1: | |
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] | |
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] | |
paths = renew_resnet_paths(resnets) | |
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
if ["conv.weight", "conv.bias"] in output_block_list.values(): | |
index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
f"output_blocks.{i}.{index}.conv.weight" | |
] | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
f"output_blocks.{i}.{index}.conv.bias" | |
] | |
# Clear attentions as they have been attributed above. | |
if len(attentions) == 2: | |
attentions = [] | |
elif f"output_blocks.{i}.1.weight" in unet_state_dict: | |
# text_unet uses linear layers in place of upsamplers | |
shape = unet_state_dict[f"output_blocks.{i}.1.weight"].shape | |
if shape[0] != shape[1]: | |
continue | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.weight"] = unet_state_dict.pop( | |
f"output_blocks.{i}.1.weight" | |
) | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.bias"] = unet_state_dict.pop( | |
f"output_blocks.{i}.1.bias" | |
) | |
# Clear attentions as they have been attributed above. | |
if len(attentions) == 2: | |
attentions = [] | |
elif f"output_blocks.{i}.2.weight" in unet_state_dict: | |
# text_unet uses linear layers in place of upsamplers | |
shape = unet_state_dict[f"output_blocks.{i}.2.weight"].shape | |
if shape[0] != shape[1]: | |
continue | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.weight"] = unet_state_dict.pop( | |
f"output_blocks.{i}.2.weight" | |
) | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.bias"] = unet_state_dict.pop( | |
f"output_blocks.{i}.2.bias" | |
) | |
if len(attentions): | |
paths = renew_attention_paths(attentions) | |
meta_path = { | |
"old": f"output_blocks.{i}.1", | |
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", | |
} | |
assign_to_checkpoint( | |
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
) | |
else: | |
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) | |
for path in resnet_0_paths: | |
old_path = ".".join(["output_blocks", str(i), path["old"]]) | |
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) | |
new_checkpoint[new_path] = unet_state_dict[old_path] | |
return new_checkpoint | |
def convert_vd_vae_checkpoint(checkpoint, config): | |
# extract state dict for VAE | |
vae_state_dict = {} | |
keys = list(checkpoint.keys()) | |
for key in keys: | |
vae_state_dict[key] = checkpoint.get(key) | |
new_checkpoint = {} | |
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | |
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | |
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] | |
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | |
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] | |
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] | |
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | |
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | |
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] | |
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | |
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] | |
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] | |
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | |
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | |
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | |
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | |
# Retrieves the keys for the encoder down blocks only | |
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) | |
down_blocks = { | |
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) | |
} | |
# Retrieves the keys for the decoder up blocks only | |
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) | |
up_blocks = { | |
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) | |
} | |
for i in range(num_down_blocks): | |
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] | |
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.weight" | |
) | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.bias" | |
) | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
for i in range(num_up_blocks): | |
block_id = num_up_blocks - 1 - i | |
resnets = [ | |
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | |
] | |
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.weight" | |
] | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.bias" | |
] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
paths = renew_vae_resnet_paths(resnets) | |
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
paths = renew_vae_attention_paths(mid_attentions) | |
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
conv_attn_to_linear(new_checkpoint) | |
return new_checkpoint | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--unet_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." | |
) | |
parser.add_argument( | |
"--vae_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." | |
) | |
parser.add_argument( | |
"--optimus_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." | |
) | |
parser.add_argument( | |
"--scheduler_type", | |
default="pndm", | |
type=str, | |
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", | |
) | |
parser.add_argument( | |
"--extract_ema", | |
action="store_true", | |
help=( | |
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" | |
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" | |
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." | |
), | |
) | |
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
args = parser.parse_args() | |
scheduler_config = SCHEDULER_CONFIG | |
num_train_timesteps = scheduler_config.timesteps | |
beta_start = scheduler_config.beta_linear_start | |
beta_end = scheduler_config.beta_linear_end | |
if args.scheduler_type == "pndm": | |
scheduler = PNDMScheduler( | |
beta_end=beta_end, | |
beta_schedule="scaled_linear", | |
beta_start=beta_start, | |
num_train_timesteps=num_train_timesteps, | |
skip_prk_steps=True, | |
steps_offset=1, | |
) | |
elif args.scheduler_type == "lms": | |
scheduler = LMSDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear") | |
elif args.scheduler_type == "euler": | |
scheduler = EulerDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear") | |
elif args.scheduler_type == "euler-ancestral": | |
scheduler = EulerAncestralDiscreteScheduler( | |
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear" | |
) | |
elif args.scheduler_type == "dpm": | |
scheduler = DPMSolverMultistepScheduler( | |
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear" | |
) | |
elif args.scheduler_type == "ddim": | |
scheduler = DDIMScheduler( | |
beta_start=beta_start, | |
beta_end=beta_end, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
else: | |
raise ValueError(f"Scheduler of type {args.scheduler_type} doesn't exist!") | |
# Convert the UNet2DConditionModel models. | |
if args.unet_checkpoint_path is not None: | |
# image UNet | |
image_unet_config = create_image_unet_diffusers_config(IMAGE_UNET_CONFIG) | |
checkpoint = torch.load(args.unet_checkpoint_path) | |
converted_image_unet_checkpoint = convert_vd_unet_checkpoint( | |
checkpoint, image_unet_config, unet_key="model.diffusion_model.unet_image.", extract_ema=args.extract_ema | |
) | |
image_unet = UNet2DConditionModel(**image_unet_config) | |
image_unet.load_state_dict(converted_image_unet_checkpoint) | |
# text UNet | |
text_unet_config = create_text_unet_diffusers_config(TEXT_UNET_CONFIG) | |
converted_text_unet_checkpoint = convert_vd_unet_checkpoint( | |
checkpoint, text_unet_config, unet_key="model.diffusion_model.unet_text.", extract_ema=args.extract_ema | |
) | |
text_unet = UNetFlatConditionModel(**text_unet_config) | |
text_unet.load_state_dict(converted_text_unet_checkpoint) | |
# Convert the VAE model. | |
if args.vae_checkpoint_path is not None: | |
vae_config = create_vae_diffusers_config(AUTOENCODER_CONFIG) | |
checkpoint = torch.load(args.vae_checkpoint_path) | |
converted_vae_checkpoint = convert_vd_vae_checkpoint(checkpoint, vae_config) | |
vae = AutoencoderKL(**vae_config) | |
vae.load_state_dict(converted_vae_checkpoint) | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
image_feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14") | |
text_encoder = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") | |
pipe = VersatileDiffusionPipeline( | |
scheduler=scheduler, | |
tokenizer=tokenizer, | |
image_feature_extractor=image_feature_extractor, | |
text_encoder=text_encoder, | |
image_encoder=image_encoder, | |
image_unet=image_unet, | |
text_unet=text_unet, | |
vae=vae, | |
) | |
pipe.save_pretrained(args.dump_path) | |