Spaces:
Running
Running
import contextlib | |
import importlib | |
from inspect import isfunction | |
import os | |
import soundfile as sf | |
import time | |
import wave | |
import urllib.request | |
import progressbar | |
CACHE_DIR = os.getenv( | |
"AUDIOLDM_CACHE_DIR", | |
os.path.join(os.path.expanduser("~"), ".cache/audioldm")) | |
def get_duration(fname): | |
with contextlib.closing(wave.open(fname, 'r')) as f: | |
frames = f.getnframes() | |
rate = f.getframerate() | |
return frames / float(rate) | |
def get_bit_depth(fname): | |
with contextlib.closing(wave.open(fname, 'r')) as f: | |
bit_depth = f.getsampwidth() * 8 | |
return bit_depth | |
def get_time(): | |
t = time.localtime() | |
return time.strftime("%d_%m_%Y_%H_%M_%S", t) | |
def seed_everything(seed): | |
import random, os | |
import numpy as np | |
import torch | |
random.seed(seed) | |
os.environ["PYTHONHASHSEED"] = str(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = True | |
def save_wave(waveform, savepath, name="outwav"): | |
if type(name) is not list: | |
name = [name] * waveform.shape[0] | |
for i in range(waveform.shape[0]): | |
path = os.path.join( | |
savepath, | |
"%s_%s.wav" | |
% ( | |
os.path.basename(name[i]) | |
if (not ".wav" in name[i]) | |
else os.path.basename(name[i]).split(".")[0], | |
i, | |
), | |
) | |
print("Save audio to %s" % path) | |
sf.write(path, waveform[i, 0], samplerate=16000) | |
def exists(x): | |
return x is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def count_params(model, verbose=False): | |
total_params = sum(p.numel() for p in model.parameters()) | |
if verbose: | |
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.") | |
return total_params | |
def get_obj_from_str(string, reload=False): | |
module, cls = string.rsplit(".", 1) | |
if reload: | |
module_imp = importlib.import_module(module) | |
importlib.reload(module_imp) | |
return getattr(importlib.import_module(module, package=None), cls) | |
def instantiate_from_config(config): | |
if not "target" in config: | |
if config == "__is_first_stage__": | |
return None | |
elif config == "__is_unconditional__": | |
return None | |
raise KeyError("Expected key `target` to instantiate.") | |
return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
def default_audioldm_config(model_name="audioldm-s-full"): | |
basic_config = { | |
"wave_file_save_path": "./output", | |
"id": { | |
"version": "v1", | |
"name": "default", | |
"root": "/mnt/fast/nobackup/users/hl01486/projects/general_audio_generation/AudioLDM-python/config/default/latent_diffusion.yaml", | |
}, | |
"preprocessing": { | |
"audio": {"sampling_rate": 16000, "max_wav_value": 32768}, | |
"stft": {"filter_length": 1024, "hop_length": 160, "win_length": 1024}, | |
"mel": { | |
"n_mel_channels": 64, | |
"mel_fmin": 0, | |
"mel_fmax": 8000, | |
"freqm": 0, | |
"timem": 0, | |
"blur": False, | |
"mean": -4.63, | |
"std": 2.74, | |
"target_length": 1024, | |
}, | |
}, | |
"model": { | |
"device": "cuda", | |
"target": "audioldm.pipline.LatentDiffusion", | |
"params": { | |
"base_learning_rate": 5e-06, | |
"linear_start": 0.0015, | |
"linear_end": 0.0195, | |
"num_timesteps_cond": 1, | |
"log_every_t": 200, | |
"timesteps": 1000, | |
"first_stage_key": "fbank", | |
"cond_stage_key": "waveform", | |
"latent_t_size": 256, | |
"latent_f_size": 16, | |
"channels": 8, | |
"cond_stage_trainable": True, | |
"conditioning_key": "film", | |
"monitor": "val/loss_simple_ema", | |
"scale_by_std": True, | |
"unet_config": { | |
"target": "audioldm.latent_diffusion.openaimodel.UNetModel", | |
"params": { | |
"image_size": 64, | |
"extra_film_condition_dim": 512, | |
"extra_film_use_concat": True, | |
"in_channels": 8, | |
"out_channels": 8, | |
"model_channels": 128, | |
"attention_resolutions": [8, 4, 2], | |
"num_res_blocks": 2, | |
"channel_mult": [1, 2, 3, 5], | |
"num_head_channels": 32, | |
"use_spatial_transformer": True, | |
}, | |
}, | |
"first_stage_config": { | |
"base_learning_rate": 4.5e-05, | |
"target": "audioldm.variational_autoencoder.autoencoder.AutoencoderKL", | |
"params": { | |
"monitor": "val/rec_loss", | |
"image_key": "fbank", | |
"subband": 1, | |
"embed_dim": 8, | |
"time_shuffle": 1, | |
"ddconfig": { | |
"double_z": True, | |
"z_channels": 8, | |
"resolution": 256, | |
"downsample_time": False, | |
"in_channels": 1, | |
"out_ch": 1, | |
"ch": 128, | |
"ch_mult": [1, 2, 4], | |
"num_res_blocks": 2, | |
"attn_resolutions": [], | |
"dropout": 0.0, | |
}, | |
}, | |
}, | |
"cond_stage_config": { | |
"target": "audioldm.clap.encoders.CLAPAudioEmbeddingClassifierFreev2", | |
"params": { | |
"key": "waveform", | |
"sampling_rate": 16000, | |
"embed_mode": "audio", | |
"unconditional_prob": 0.1, | |
}, | |
}, | |
}, | |
}, | |
} | |
if("-l-" in model_name): | |
basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 256 | |
basic_config["model"]["params"]["unet_config"]["params"]["num_head_channels"] = 64 | |
elif("-m-" in model_name): | |
basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 192 | |
basic_config["model"]["params"]["cond_stage_config"]["params"]["amodel"] = "HTSAT-base" # This model use a larger HTAST | |
return basic_config | |
def get_metadata(): | |
return { | |
"audioldm-s-full": { | |
"path": os.path.join( | |
CACHE_DIR, | |
"audioldm-s-full.ckpt", | |
), | |
"url": "https://zenodo.org/record/7600541/files/audioldm-s-full?download=1", | |
}, | |
"audioldm-l-full": { | |
"path": os.path.join( | |
CACHE_DIR, | |
"audioldm-l-full.ckpt", | |
), | |
"url": "https://zenodo.org/record/7698295/files/audioldm-full-l.ckpt?download=1", | |
}, | |
"audioldm-s-full-v2": { | |
"path": os.path.join( | |
CACHE_DIR, | |
"audioldm-s-full-v2.ckpt", | |
), | |
"url": "https://zenodo.org/record/7698295/files/audioldm-full-s-v2.ckpt?download=1", | |
}, | |
"audioldm-m-text-ft": { | |
"path": os.path.join( | |
CACHE_DIR, | |
"audioldm-m-text-ft.ckpt", | |
), | |
"url": "https://zenodo.org/record/7813012/files/audioldm-m-text-ft.ckpt?download=1", | |
}, | |
"audioldm-s-text-ft": { | |
"path": os.path.join( | |
CACHE_DIR, | |
"audioldm-s-text-ft.ckpt", | |
), | |
"url": "https://zenodo.org/record/7813012/files/audioldm-s-text-ft.ckpt?download=1", | |
}, | |
"audioldm-m-full": { | |
"path": os.path.join( | |
CACHE_DIR, | |
"audioldm-m-full.ckpt", | |
), | |
"url": "https://zenodo.org/record/7813012/files/audioldm-m-full.ckpt?download=1", | |
}, | |
} | |
class MyProgressBar(): | |
def __init__(self): | |
self.pbar = None | |
def __call__(self, block_num, block_size, total_size): | |
if not self.pbar: | |
self.pbar=progressbar.ProgressBar(maxval=total_size) | |
self.pbar.start() | |
downloaded = block_num * block_size | |
if downloaded < total_size: | |
self.pbar.update(downloaded) | |
else: | |
self.pbar.finish() | |
def download_checkpoint(checkpoint_name="audioldm-s-full"): | |
meta = get_metadata() | |
if(checkpoint_name not in meta.keys()): | |
print("The model name you provided is not supported. Please use one of the following: ", meta.keys()) | |
if not os.path.exists(meta[checkpoint_name]["path"]) or os.path.getsize(meta[checkpoint_name]["path"]) < 2*10**9: | |
os.makedirs(os.path.dirname(meta[checkpoint_name]["path"]), exist_ok=True) | |
print(f"Downloading the main structure of {checkpoint_name} into {os.path.dirname(meta[checkpoint_name]['path'])}") | |
urllib.request.urlretrieve(meta[checkpoint_name]["url"], meta[checkpoint_name]["path"], MyProgressBar()) | |
print( | |
"Weights downloaded in: {} Size: {}".format( | |
meta[checkpoint_name]["path"], | |
os.path.getsize(meta[checkpoint_name]["path"]), | |
) | |
) | |