Spaces:
Running
Running
import inspect | |
import re | |
from typing import Callable, List, Optional, Union | |
import numpy as np | |
import PIL | |
import torch | |
from packaging import version | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
import diffusers | |
from diffusers import SchedulerMixin, StableDiffusionPipeline | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker | |
from diffusers.utils import logging | |
try: | |
from diffusers.utils import PIL_INTERPOLATION | |
except ImportError: | |
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): | |
PIL_INTERPOLATION = { | |
"linear": PIL.Image.Resampling.BILINEAR, | |
"bilinear": PIL.Image.Resampling.BILINEAR, | |
"bicubic": PIL.Image.Resampling.BICUBIC, | |
"lanczos": PIL.Image.Resampling.LANCZOS, | |
"nearest": PIL.Image.Resampling.NEAREST, | |
} | |
else: | |
PIL_INTERPOLATION = { | |
"linear": PIL.Image.LINEAR, | |
"bilinear": PIL.Image.BILINEAR, | |
"bicubic": PIL.Image.BICUBIC, | |
"lanczos": PIL.Image.LANCZOS, | |
"nearest": PIL.Image.NEAREST, | |
} | |
# ------------------------------------------------------------------------------ | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
re_attention = re.compile( | |
r""" | |
\\\(| | |
\\\)| | |
\\\[| | |
\\]| | |
\\\\| | |
\\| | |
\(| | |
\[| | |
:([+-]?[.\d]+)\)| | |
\)| | |
]| | |
[^\\()\[\]:]+| | |
: | |
""", | |
re.X, | |
) | |
def parse_prompt_attention(text): | |
""" | |
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. | |
Accepted tokens are: | |
(abc) - increases attention to abc by a multiplier of 1.1 | |
(abc:3.12) - increases attention to abc by a multiplier of 3.12 | |
[abc] - decreases attention to abc by a multiplier of 1.1 | |
\( - literal character '(' | |
\[ - literal character '[' | |
\) - literal character ')' | |
\] - literal character ']' | |
\\ - literal character '\' | |
anything else - just text | |
>>> parse_prompt_attention('normal text') | |
[['normal text', 1.0]] | |
>>> parse_prompt_attention('an (important) word') | |
[['an ', 1.0], ['important', 1.1], [' word', 1.0]] | |
>>> parse_prompt_attention('(unbalanced') | |
[['unbalanced', 1.1]] | |
>>> parse_prompt_attention('\(literal\]') | |
[['(literal]', 1.0]] | |
>>> parse_prompt_attention('(unnecessary)(parens)') | |
[['unnecessaryparens', 1.1]] | |
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') | |
[['a ', 1.0], | |
['house', 1.5730000000000004], | |
[' ', 1.1], | |
['on', 1.0], | |
[' a ', 1.1], | |
['hill', 0.55], | |
[', sun, ', 1.1], | |
['sky', 1.4641000000000006], | |
['.', 1.1]] | |
""" | |
res = [] | |
round_brackets = [] | |
square_brackets = [] | |
round_bracket_multiplier = 1.1 | |
square_bracket_multiplier = 1 / 1.1 | |
def multiply_range(start_position, multiplier): | |
for p in range(start_position, len(res)): | |
res[p][1] *= multiplier | |
for m in re_attention.finditer(text): | |
text = m.group(0) | |
weight = m.group(1) | |
if text.startswith("\\"): | |
res.append([text[1:], 1.0]) | |
elif text == "(": | |
round_brackets.append(len(res)) | |
elif text == "[": | |
square_brackets.append(len(res)) | |
elif weight is not None and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), float(weight)) | |
elif text == ")" and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), round_bracket_multiplier) | |
elif text == "]" and len(square_brackets) > 0: | |
multiply_range(square_brackets.pop(), square_bracket_multiplier) | |
else: | |
res.append([text, 1.0]) | |
for pos in round_brackets: | |
multiply_range(pos, round_bracket_multiplier) | |
for pos in square_brackets: | |
multiply_range(pos, square_bracket_multiplier) | |
if len(res) == 0: | |
res = [["", 1.0]] | |
# merge runs of identical weights | |
i = 0 | |
while i + 1 < len(res): | |
if res[i][1] == res[i + 1][1]: | |
res[i][0] += res[i + 1][0] | |
res.pop(i + 1) | |
else: | |
i += 1 | |
return res | |
def get_prompts_with_weights(pipe: StableDiffusionPipeline, prompt: List[str], max_length: int): | |
r""" | |
Tokenize a list of prompts and return its tokens with weights of each token. | |
No padding, starting or ending token is included. | |
""" | |
tokens = [] | |
weights = [] | |
truncated = False | |
for text in prompt: | |
texts_and_weights = parse_prompt_attention(text) | |
text_token = [] | |
text_weight = [] | |
for word, weight in texts_and_weights: | |
# tokenize and discard the starting and the ending token | |
token = pipe.tokenizer(word).input_ids[1:-1] | |
text_token += token | |
# copy the weight by length of token | |
text_weight += [weight] * len(token) | |
# stop if the text is too long (longer than truncation limit) | |
if len(text_token) > max_length: | |
truncated = True | |
break | |
# truncate | |
if len(text_token) > max_length: | |
truncated = True | |
text_token = text_token[:max_length] | |
text_weight = text_weight[:max_length] | |
tokens.append(text_token) | |
weights.append(text_weight) | |
if truncated: | |
logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples") | |
return tokens, weights | |
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77): | |
r""" | |
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length. | |
""" | |
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2) | |
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length | |
for i in range(len(tokens)): | |
tokens[i] = [bos] + tokens[i] + [pad] * (max_length - 1 - len(tokens[i]) - 1) + [eos] | |
if no_boseos_middle: | |
weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i])) | |
else: | |
w = [] | |
if len(weights[i]) == 0: | |
w = [1.0] * weights_length | |
else: | |
for j in range(max_embeddings_multiples): | |
w.append(1.0) # weight for starting token in this chunk | |
w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))] | |
w.append(1.0) # weight for ending token in this chunk | |
w += [1.0] * (weights_length - len(w)) | |
weights[i] = w[:] | |
return tokens, weights | |
def get_unweighted_text_embeddings( | |
pipe: StableDiffusionPipeline, | |
text_input: torch.Tensor, | |
chunk_length: int, | |
no_boseos_middle: Optional[bool] = True, | |
): | |
""" | |
When the length of tokens is a multiple of the capacity of the text encoder, | |
it should be split into chunks and sent to the text encoder individually. | |
""" | |
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2) | |
if max_embeddings_multiples > 1: | |
text_embeddings = [] | |
for i in range(max_embeddings_multiples): | |
# extract the i-th chunk | |
text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone() | |
# cover the head and the tail by the starting and the ending tokens | |
text_input_chunk[:, 0] = text_input[0, 0] | |
text_input_chunk[:, -1] = text_input[0, -1] | |
text_embedding = pipe.text_encoder(text_input_chunk)[0] | |
if no_boseos_middle: | |
if i == 0: | |
# discard the ending token | |
text_embedding = text_embedding[:, :-1] | |
elif i == max_embeddings_multiples - 1: | |
# discard the starting token | |
text_embedding = text_embedding[:, 1:] | |
else: | |
# discard both starting and ending tokens | |
text_embedding = text_embedding[:, 1:-1] | |
text_embeddings.append(text_embedding) | |
text_embeddings = torch.concat(text_embeddings, axis=1) | |
else: | |
text_embeddings = pipe.text_encoder(text_input)[0] | |
return text_embeddings | |
def get_weighted_text_embeddings( | |
pipe: StableDiffusionPipeline, | |
prompt: Union[str, List[str]], | |
uncond_prompt: Optional[Union[str, List[str]]] = None, | |
max_embeddings_multiples: Optional[int] = 3, | |
no_boseos_middle: Optional[bool] = False, | |
skip_parsing: Optional[bool] = False, | |
skip_weighting: Optional[bool] = False, | |
): | |
r""" | |
Prompts can be assigned with local weights using brackets. For example, | |
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful', | |
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1. | |
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean. | |
Args: | |
pipe (`StableDiffusionPipeline`): | |
Pipe to provide access to the tokenizer and the text encoder. | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
uncond_prompt (`str` or `List[str]`): | |
The unconditional prompt or prompts for guide the image generation. If unconditional prompt | |
is provided, the embeddings of prompt and uncond_prompt are concatenated. | |
max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
no_boseos_middle (`bool`, *optional*, defaults to `False`): | |
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and | |
ending token in each of the chunk in the middle. | |
skip_parsing (`bool`, *optional*, defaults to `False`): | |
Skip the parsing of brackets. | |
skip_weighting (`bool`, *optional*, defaults to `False`): | |
Skip the weighting. When the parsing is skipped, it is forced True. | |
""" | |
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 | |
if isinstance(prompt, str): | |
prompt = [prompt] | |
if not skip_parsing: | |
prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2) | |
if uncond_prompt is not None: | |
if isinstance(uncond_prompt, str): | |
uncond_prompt = [uncond_prompt] | |
uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2) | |
else: | |
prompt_tokens = [ | |
token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids | |
] | |
prompt_weights = [[1.0] * len(token) for token in prompt_tokens] | |
if uncond_prompt is not None: | |
if isinstance(uncond_prompt, str): | |
uncond_prompt = [uncond_prompt] | |
uncond_tokens = [ | |
token[1:-1] | |
for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids | |
] | |
uncond_weights = [[1.0] * len(token) for token in uncond_tokens] | |
# round up the longest length of tokens to a multiple of (model_max_length - 2) | |
max_length = max([len(token) for token in prompt_tokens]) | |
if uncond_prompt is not None: | |
max_length = max(max_length, max([len(token) for token in uncond_tokens])) | |
max_embeddings_multiples = min( | |
max_embeddings_multiples, | |
(max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1, | |
) | |
max_embeddings_multiples = max(1, max_embeddings_multiples) | |
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 | |
# pad the length of tokens and weights | |
bos = pipe.tokenizer.bos_token_id | |
eos = pipe.tokenizer.eos_token_id | |
pad = getattr(pipe.tokenizer, "pad_token_id", eos) | |
prompt_tokens, prompt_weights = pad_tokens_and_weights( | |
prompt_tokens, | |
prompt_weights, | |
max_length, | |
bos, | |
eos, | |
pad, | |
no_boseos_middle=no_boseos_middle, | |
chunk_length=pipe.tokenizer.model_max_length, | |
) | |
prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device) | |
if uncond_prompt is not None: | |
uncond_tokens, uncond_weights = pad_tokens_and_weights( | |
uncond_tokens, | |
uncond_weights, | |
max_length, | |
bos, | |
eos, | |
pad, | |
no_boseos_middle=no_boseos_middle, | |
chunk_length=pipe.tokenizer.model_max_length, | |
) | |
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device) | |
# get the embeddings | |
text_embeddings = get_unweighted_text_embeddings( | |
pipe, | |
prompt_tokens, | |
pipe.tokenizer.model_max_length, | |
no_boseos_middle=no_boseos_middle, | |
) | |
prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=pipe.device) | |
if uncond_prompt is not None: | |
uncond_embeddings = get_unweighted_text_embeddings( | |
pipe, | |
uncond_tokens, | |
pipe.tokenizer.model_max_length, | |
no_boseos_middle=no_boseos_middle, | |
) | |
uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=pipe.device) | |
# assign weights to the prompts and normalize in the sense of mean | |
# TODO: should we normalize by chunk or in a whole (current implementation)? | |
if (not skip_parsing) and (not skip_weighting): | |
previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype) | |
text_embeddings *= prompt_weights.unsqueeze(-1) | |
current_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype) | |
text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1) | |
if uncond_prompt is not None: | |
previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype) | |
uncond_embeddings *= uncond_weights.unsqueeze(-1) | |
current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype) | |
uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1) | |
if uncond_prompt is not None: | |
return text_embeddings, uncond_embeddings | |
return text_embeddings, None | |
def preprocess_image(image): | |
w, h = image.size | |
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 | |
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image[None].transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return 2.0 * image - 1.0 | |
def preprocess_mask(mask, scale_factor=8): | |
mask = mask.convert("L") | |
w, h = mask.size | |
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 | |
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"]) | |
mask = np.array(mask).astype(np.float32) / 255.0 | |
mask = np.tile(mask, (4, 1, 1)) | |
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do? | |
mask = 1 - mask # repaint white, keep black | |
mask = torch.from_numpy(mask) | |
return mask | |
class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing | |
weighting in prompt. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. | |
feature_extractor ([`CLIPImageProcessor`]): | |
Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
""" | |
if version.parse(version.parse(diffusers.__version__).base_version) >= version.parse("0.9.0"): | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: SchedulerMixin, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
requires_safety_checker=requires_safety_checker, | |
) | |
self.__init__additional__() | |
else: | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: SchedulerMixin, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
): | |
super().__init__( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
self.__init__additional__() | |
def __init__additional__(self): | |
if not hasattr(self, "vae_scale_factor"): | |
setattr(self, "vae_scale_factor", 2 ** (len(self.vae.config.block_out_channels) - 1)) | |
def _execution_device(self): | |
r""" | |
Returns the device on which the pipeline's models will be executed. After calling | |
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
hooks. | |
""" | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
max_embeddings_multiples, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `list(int)`): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
""" | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
if negative_prompt is None: | |
negative_prompt = [""] * batch_size | |
elif isinstance(negative_prompt, str): | |
negative_prompt = [negative_prompt] * batch_size | |
if batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
text_embeddings, uncond_embeddings = get_weighted_text_embeddings( | |
pipe=self, | |
prompt=prompt, | |
uncond_prompt=negative_prompt if do_classifier_free_guidance else None, | |
max_embeddings_multiples=max_embeddings_multiples, | |
) | |
bs_embed, seq_len, _ = text_embeddings.shape | |
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) | |
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
bs_embed, seq_len, _ = uncond_embeddings.shape | |
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1) | |
uncond_embeddings = uncond_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def check_inputs(self, prompt, height, width, strength, callback_steps): | |
if not isinstance(prompt, str) and not isinstance(prompt, list): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if strength < 0 or strength > 1: | |
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
def get_timesteps(self, num_inference_steps, strength, device, is_text2img): | |
if is_text2img: | |
return self.scheduler.timesteps.to(device), num_inference_steps | |
else: | |
# get the original timestep using init_timestep | |
offset = self.scheduler.config.get("steps_offset", 0) | |
init_timestep = int(num_inference_steps * strength) + offset | |
init_timestep = min(init_timestep, num_inference_steps) | |
t_start = max(num_inference_steps - init_timestep + offset, 0) | |
timesteps = self.scheduler.timesteps[t_start:].to(device) | |
return timesteps, num_inference_steps - t_start | |
def run_safety_checker(self, image, device, dtype): | |
if self.safety_checker is not None: | |
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
) | |
else: | |
has_nsfw_concept = None | |
return image, has_nsfw_concept | |
def decode_latents(self, latents): | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def prepare_latents(self, image, timestep, batch_size, height, width, dtype, device, generator, latents=None): | |
if image is None: | |
shape = ( | |
batch_size, | |
self.unet.in_channels, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if latents is None: | |
if device.type == "mps": | |
# randn does not work reproducibly on mps | |
latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device) | |
else: | |
latents = torch.randn(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents, None, None | |
else: | |
init_latent_dist = self.vae.encode(image).latent_dist | |
init_latents = init_latent_dist.sample(generator=generator) | |
init_latents = 0.18215 * init_latents | |
init_latents = torch.cat([init_latents] * batch_size, dim=0) | |
init_latents_orig = init_latents | |
shape = init_latents.shape | |
# add noise to latents using the timesteps | |
if device.type == "mps": | |
noise = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device) | |
else: | |
noise = torch.randn(shape, generator=generator, device=device, dtype=dtype) | |
latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
return latents, init_latents_orig, noise | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
height: int = 512, | |
width: int = 512, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
strength: float = 0.8, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[torch.Generator] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
max_embeddings_multiples: Optional[int] = 3, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
is_cancelled_callback: Optional[Callable[[], bool]] = None, | |
callback_steps: int = 1, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
image (`torch.FloatTensor` or `PIL.Image.Image`): | |
`Image`, or tensor representing an image batch, that will be used as the starting point for the | |
process. | |
mask_image (`torch.FloatTensor` or `PIL.Image.Image`): | |
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be | |
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a | |
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should | |
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
strength (`float`, *optional*, defaults to 0.8): | |
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. | |
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The | |
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added | |
noise will be maximum and the denoising process will run for the full number of iterations specified in | |
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator`, *optional*): | |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
is_cancelled_callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. If the function returns | |
`True`, the inference will be cancelled. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
Returns: | |
`None` if cancelled by `is_cancelled_callback`, | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs(prompt, height, width, strength, callback_steps) | |
# 2. Define call parameters | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_embeddings = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
max_embeddings_multiples, | |
) | |
dtype = text_embeddings.dtype | |
# 4. Preprocess image and mask | |
if isinstance(image, PIL.Image.Image): | |
image = preprocess_image(image) | |
if image is not None: | |
image = image.to(device=self.device, dtype=dtype) | |
if isinstance(mask_image, PIL.Image.Image): | |
mask_image = preprocess_mask(mask_image, self.vae_scale_factor) | |
if mask_image is not None: | |
mask = mask_image.to(device=self.device, dtype=dtype) | |
mask = torch.cat([mask] * batch_size * num_images_per_prompt) | |
else: | |
mask = None | |
# 5. set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device, image is None) | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
# 6. Prepare latent variables | |
latents, init_latents_orig, noise = self.prepare_latents( | |
image, | |
latent_timestep, | |
batch_size * num_images_per_prompt, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 8. Denoising loop | |
for i, t in enumerate(self.progress_bar(timesteps)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
if mask is not None: | |
# masking | |
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) | |
latents = (init_latents_proper * mask) + (latents * (1 - mask)) | |
# call the callback, if provided | |
if i % callback_steps == 0: | |
if callback is not None: | |
callback(i, t, latents) | |
if is_cancelled_callback is not None and is_cancelled_callback(): | |
return None | |
# 9. Post-processing | |
image = self.decode_latents(latents) | |
# 10. Run safety checker | |
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype) | |
# 11. Convert to PIL | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return image, has_nsfw_concept | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
def text2img( | |
self, | |
prompt: Union[str, List[str]], | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
height: int = 512, | |
width: int = 512, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[torch.Generator] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
max_embeddings_multiples: Optional[int] = 3, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
is_cancelled_callback: Optional[Callable[[], bool]] = None, | |
callback_steps: int = 1, | |
): | |
r""" | |
Function for text-to-image generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator`, *optional*): | |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
is_cancelled_callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. If the function returns | |
`True`, the inference will be cancelled. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
return self.__call__( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=num_images_per_prompt, | |
eta=eta, | |
generator=generator, | |
latents=latents, | |
max_embeddings_multiples=max_embeddings_multiples, | |
output_type=output_type, | |
return_dict=return_dict, | |
callback=callback, | |
is_cancelled_callback=is_cancelled_callback, | |
callback_steps=callback_steps, | |
) | |
def img2img( | |
self, | |
image: Union[torch.FloatTensor, PIL.Image.Image], | |
prompt: Union[str, List[str]], | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
strength: float = 0.8, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: Optional[float] = 0.0, | |
generator: Optional[torch.Generator] = None, | |
max_embeddings_multiples: Optional[int] = 3, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
is_cancelled_callback: Optional[Callable[[], bool]] = None, | |
callback_steps: int = 1, | |
): | |
r""" | |
Function for image-to-image generation. | |
Args: | |
image (`torch.FloatTensor` or `PIL.Image.Image`): | |
`Image`, or tensor representing an image batch, that will be used as the starting point for the | |
process. | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
strength (`float`, *optional*, defaults to 0.8): | |
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. | |
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The | |
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added | |
noise will be maximum and the denoising process will run for the full number of iterations specified in | |
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. This parameter will be modulated by `strength`. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator`, *optional*): | |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
deterministic. | |
max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
is_cancelled_callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. If the function returns | |
`True`, the inference will be cancelled. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
return self.__call__( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
strength=strength, | |
num_images_per_prompt=num_images_per_prompt, | |
eta=eta, | |
generator=generator, | |
max_embeddings_multiples=max_embeddings_multiples, | |
output_type=output_type, | |
return_dict=return_dict, | |
callback=callback, | |
is_cancelled_callback=is_cancelled_callback, | |
callback_steps=callback_steps, | |
) | |
def inpaint( | |
self, | |
image: Union[torch.FloatTensor, PIL.Image.Image], | |
mask_image: Union[torch.FloatTensor, PIL.Image.Image], | |
prompt: Union[str, List[str]], | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
strength: float = 0.8, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: Optional[float] = 0.0, | |
generator: Optional[torch.Generator] = None, | |
max_embeddings_multiples: Optional[int] = 3, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
is_cancelled_callback: Optional[Callable[[], bool]] = None, | |
callback_steps: int = 1, | |
): | |
r""" | |
Function for inpaint. | |
Args: | |
image (`torch.FloatTensor` or `PIL.Image.Image`): | |
`Image`, or tensor representing an image batch, that will be used as the starting point for the | |
process. This is the image whose masked region will be inpainted. | |
mask_image (`torch.FloatTensor` or `PIL.Image.Image`): | |
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be | |
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a | |
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should | |
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
strength (`float`, *optional*, defaults to 0.8): | |
Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength` | |
is 1, the denoising process will be run on the masked area for the full number of iterations specified | |
in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more | |
noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at | |
the expense of slower inference. This parameter will be modulated by `strength`, as explained above. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator`, *optional*): | |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
deterministic. | |
max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
is_cancelled_callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. If the function returns | |
`True`, the inference will be cancelled. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
return self.__call__( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
mask_image=mask_image, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
strength=strength, | |
num_images_per_prompt=num_images_per_prompt, | |
eta=eta, | |
generator=generator, | |
max_embeddings_multiples=max_embeddings_multiples, | |
output_type=output_type, | |
return_dict=return_dict, | |
callback=callback, | |
is_cancelled_callback=is_cancelled_callback, | |
callback_steps=callback_steps, | |
) | |