Spaces:
Running
Running
from inspect import isfunction | |
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from einops import rearrange | |
from audioldm.latent_diffusion.util import checkpoint | |
def exists(val): | |
return val is not None | |
def uniq(arr): | |
return {el: True for el in arr}.keys() | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def max_neg_value(t): | |
return -torch.finfo(t.dtype).max | |
def init_(tensor): | |
dim = tensor.shape[-1] | |
std = 1 / math.sqrt(dim) | |
tensor.uniform_(-std, std) | |
return tensor | |
# feedforward | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = ( | |
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) | |
if not glu | |
else GEGLU(dim, inner_dim) | |
) | |
self.net = nn.Sequential( | |
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) | |
) | |
def forward(self, x): | |
return self.net(x) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def Normalize(in_channels): | |
return torch.nn.GroupNorm( | |
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
class LinearAttention(nn.Module): | |
def __init__(self, dim, heads=4, dim_head=32): | |
super().__init__() | |
self.heads = heads | |
hidden_dim = dim_head * heads | |
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) | |
self.to_out = nn.Conv2d(hidden_dim, dim, 1) | |
def forward(self, x): | |
b, c, h, w = x.shape | |
qkv = self.to_qkv(x) | |
q, k, v = rearrange( | |
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 | |
) | |
k = k.softmax(dim=-1) | |
context = torch.einsum("bhdn,bhen->bhde", k, v) | |
out = torch.einsum("bhde,bhdn->bhen", context, q) | |
out = rearrange( | |
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w | |
) | |
return self.to_out(out) | |
class SpatialSelfAttention(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.k = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.v = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.proj_out = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, h, w = q.shape | |
q = rearrange(q, "b c h w -> b (h w) c") | |
k = rearrange(k, "b c h w -> b c (h w)") | |
w_ = torch.einsum("bij,bjk->bik", q, k) | |
w_ = w_ * (int(c) ** (-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = rearrange(v, "b c h w -> b c (h w)") | |
w_ = rearrange(w_, "b i j -> b j i") | |
h_ = torch.einsum("bij,bjk->bik", v, w_) | |
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class CrossAttention(nn.Module): | |
""" | |
### Cross Attention Layer | |
This falls-back to self-attention when conditional embeddings are not specified. | |
""" | |
# use_flash_attention: bool = True | |
use_flash_attention: bool = False | |
def __init__( | |
self, | |
query_dim, | |
context_dim=None, | |
heads=8, | |
dim_head=64, | |
dropout=0.0, | |
is_inplace: bool = True, | |
): | |
# def __init__(self, d_model: int, d_cond: int, n_heads: int, d_head: int, is_inplace: bool = True): | |
""" | |
:param d_model: is the input embedding size | |
:param n_heads: is the number of attention heads | |
:param d_head: is the size of a attention head | |
:param d_cond: is the size of the conditional embeddings | |
:param is_inplace: specifies whether to perform the attention softmax computation inplace to | |
save memory | |
""" | |
super().__init__() | |
self.is_inplace = is_inplace | |
self.n_heads = heads | |
self.d_head = dim_head | |
# Attention scaling factor | |
self.scale = dim_head**-0.5 | |
# The normal self-attention layer | |
if context_dim is None: | |
context_dim = query_dim | |
# Query, key and value mappings | |
d_attn = dim_head * heads | |
self.to_q = nn.Linear(query_dim, d_attn, bias=False) | |
self.to_k = nn.Linear(context_dim, d_attn, bias=False) | |
self.to_v = nn.Linear(context_dim, d_attn, bias=False) | |
# Final linear layer | |
self.to_out = nn.Sequential(nn.Linear(d_attn, query_dim), nn.Dropout(dropout)) | |
# Setup [flash attention](https://github.com/HazyResearch/flash-attention). | |
# Flash attention is only used if it's installed | |
# and `CrossAttention.use_flash_attention` is set to `True`. | |
try: | |
# You can install flash attention by cloning their Github repo, | |
# [https://github.com/HazyResearch/flash-attention](https://github.com/HazyResearch/flash-attention) | |
# and then running `python setup.py install` | |
from flash_attn.flash_attention import FlashAttention | |
self.flash = FlashAttention() | |
# Set the scale for scaled dot-product attention. | |
self.flash.softmax_scale = self.scale | |
# Set to `None` if it's not installed | |
except ImportError: | |
self.flash = None | |
def forward(self, x, context=None, mask=None): | |
""" | |
:param x: are the input embeddings of shape `[batch_size, height * width, d_model]` | |
:param cond: is the conditional embeddings of shape `[batch_size, n_cond, d_cond]` | |
""" | |
# If `cond` is `None` we perform self attention | |
has_cond = context is not None | |
if not has_cond: | |
context = x | |
# Get query, key and value vectors | |
q = self.to_q(x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
# Use flash attention if it's available and the head size is less than or equal to `128` | |
if ( | |
CrossAttention.use_flash_attention | |
and self.flash is not None | |
and not has_cond | |
and self.d_head <= 128 | |
): | |
return self.flash_attention(q, k, v) | |
# Otherwise, fallback to normal attention | |
else: | |
return self.normal_attention(q, k, v) | |
def flash_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor): | |
""" | |
#### Flash Attention | |
:param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` | |
:param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` | |
:param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` | |
""" | |
# Get batch size and number of elements along sequence axis (`width * height`) | |
batch_size, seq_len, _ = q.shape | |
# Stack `q`, `k`, `v` vectors for flash attention, to get a single tensor of | |
# shape `[batch_size, seq_len, 3, n_heads * d_head]` | |
qkv = torch.stack((q, k, v), dim=2) | |
# Split the heads | |
qkv = qkv.view(batch_size, seq_len, 3, self.n_heads, self.d_head) | |
# Flash attention works for head sizes `32`, `64` and `128`, so we have to pad the heads to | |
# fit this size. | |
if self.d_head <= 32: | |
pad = 32 - self.d_head | |
elif self.d_head <= 64: | |
pad = 64 - self.d_head | |
elif self.d_head <= 128: | |
pad = 128 - self.d_head | |
else: | |
raise ValueError(f"Head size ${self.d_head} too large for Flash Attention") | |
# Pad the heads | |
if pad: | |
qkv = torch.cat( | |
(qkv, qkv.new_zeros(batch_size, seq_len, 3, self.n_heads, pad)), dim=-1 | |
) | |
# Compute attention | |
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$ | |
# This gives a tensor of shape `[batch_size, seq_len, n_heads, d_padded]` | |
# TODO here I add the dtype changing | |
out, _ = self.flash(qkv.type(torch.float16)) | |
# Truncate the extra head size | |
out = out[:, :, :, : self.d_head].float() | |
# Reshape to `[batch_size, seq_len, n_heads * d_head]` | |
out = out.reshape(batch_size, seq_len, self.n_heads * self.d_head) | |
# Map to `[batch_size, height * width, d_model]` with a linear layer | |
return self.to_out(out) | |
def normal_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor): | |
""" | |
#### Normal Attention | |
:param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` | |
:param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` | |
:param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` | |
""" | |
# Split them to heads of shape `[batch_size, seq_len, n_heads, d_head]` | |
q = q.view(*q.shape[:2], self.n_heads, -1) # [bs, 64, 20, 32] | |
k = k.view(*k.shape[:2], self.n_heads, -1) # [bs, 1, 20, 32] | |
v = v.view(*v.shape[:2], self.n_heads, -1) | |
# Calculate attention $\frac{Q K^\top}{\sqrt{d_{key}}}$ | |
attn = torch.einsum("bihd,bjhd->bhij", q, k) * self.scale | |
# Compute softmax | |
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$$ | |
if self.is_inplace: | |
half = attn.shape[0] // 2 | |
attn[half:] = attn[half:].softmax(dim=-1) | |
attn[:half] = attn[:half].softmax(dim=-1) | |
else: | |
attn = attn.softmax(dim=-1) | |
# Compute attention output | |
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$ | |
# attn: [bs, 20, 64, 1] | |
# v: [bs, 1, 20, 32] | |
out = torch.einsum("bhij,bjhd->bihd", attn, v) | |
# Reshape to `[batch_size, height * width, n_heads * d_head]` | |
out = out.reshape(*out.shape[:2], -1) | |
# Map to `[batch_size, height * width, d_model]` with a linear layer | |
return self.to_out(out) | |
# class CrossAttention(nn.Module): | |
# def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): | |
# super().__init__() | |
# inner_dim = dim_head * heads | |
# context_dim = default(context_dim, query_dim) | |
# self.scale = dim_head ** -0.5 | |
# self.heads = heads | |
# self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
# self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
# self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
# self.to_out = nn.Sequential( | |
# nn.Linear(inner_dim, query_dim), | |
# nn.Dropout(dropout) | |
# ) | |
# def forward(self, x, context=None, mask=None): | |
# h = self.heads | |
# q = self.to_q(x) | |
# context = default(context, x) | |
# k = self.to_k(context) | |
# v = self.to_v(context) | |
# q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
# sim = einsum('b i d, b j d -> b i j', q, k) * self.scale | |
# if exists(mask): | |
# mask = rearrange(mask, 'b ... -> b (...)') | |
# max_neg_value = -torch.finfo(sim.dtype).max | |
# mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
# sim.masked_fill_(~mask, max_neg_value) | |
# # attention, what we cannot get enough of | |
# attn = sim.softmax(dim=-1) | |
# out = einsum('b i j, b j d -> b i d', attn, v) | |
# out = rearrange(out, '(b h) n d -> b n (h d)', h=h) | |
# return self.to_out(out) | |
class BasicTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
n_heads, | |
d_head, | |
dropout=0.0, | |
context_dim=None, | |
gated_ff=True, | |
checkpoint=True, | |
): | |
super().__init__() | |
self.attn1 = CrossAttention( | |
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
) # is a self-attention | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
self.attn2 = CrossAttention( | |
query_dim=dim, | |
context_dim=context_dim, | |
heads=n_heads, | |
dim_head=d_head, | |
dropout=dropout, | |
) # is self-attn if context is none | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def forward(self, x, context=None): | |
if context is None: | |
return checkpoint(self._forward, (x,), self.parameters(), self.checkpoint) | |
else: | |
return checkpoint( | |
self._forward, (x, context), self.parameters(), self.checkpoint | |
) | |
def _forward(self, x, context=None): | |
x = self.attn1(self.norm1(x)) + x | |
x = self.attn2(self.norm2(x), context=context) + x | |
x = self.ff(self.norm3(x)) + x | |
return x | |
class SpatialTransformer(nn.Module): | |
""" | |
Transformer block for image-like data. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
""" | |
def __init__( | |
self, | |
in_channels, | |
n_heads, | |
d_head, | |
depth=1, | |
dropout=0.0, | |
context_dim=None, | |
no_context=False, | |
): | |
super().__init__() | |
if no_context: | |
context_dim = None | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = Normalize(in_channels) | |
self.proj_in = nn.Conv2d( | |
in_channels, inner_dim, kernel_size=1, stride=1, padding=0 | |
) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim | |
) | |
for d in range(depth) | |
] | |
) | |
self.proj_out = zero_module( | |
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
) | |
def forward(self, x, context=None): | |
# note: if no context is given, cross-attention defaults to self-attention | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
x = self.proj_in(x) | |
x = rearrange(x, "b c h w -> b (h w) c") | |
for block in self.transformer_blocks: | |
x = block(x, context=context) | |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) | |
x = self.proj_out(x) | |
return x + x_in | |