Spaces:
Runtime error
Runtime error
Update test_api
Browse files- .gitignore +1 -0
- app.py +122 -73
- plot_calls.py +9 -0
- requirements.txt +1 -0
- test_api.py +75 -43
.gitignore
CHANGED
@@ -98,3 +98,4 @@ docs/**/*.html
|
|
98 |
.bash_env
|
99 |
**/*secret*
|
100 |
**/*private*
|
|
|
|
98 |
.bash_env
|
99 |
**/*secret*
|
100 |
**/*private*
|
101 |
+
/call_history.csv
|
app.py
CHANGED
@@ -138,17 +138,6 @@ def get_types(cls_set: List[Type], component: str):
|
|
138 |
|
139 |
routes.get_types = get_types
|
140 |
|
141 |
-
functions = {
|
142 |
-
"text2int": text2int,
|
143 |
-
"text2int_preprocessed": try_text2int_preprocessed,
|
144 |
-
}
|
145 |
-
|
146 |
-
|
147 |
-
def text2int_selector(text, func):
|
148 |
-
f = functions[func]
|
149 |
-
return f(text)
|
150 |
-
|
151 |
-
|
152 |
sentiment = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
153 |
|
154 |
|
@@ -157,73 +146,133 @@ def get_sentiment(text):
|
|
157 |
|
158 |
|
159 |
with gr.Blocks() as html_block:
|
160 |
-
gr.Markdown("#
|
161 |
-
|
162 |
-
inputs_text2int = [
|
163 |
-
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
|
164 |
-
value="forty two"),
|
165 |
-
gr.Radio(["text2int", "text2int_preprocessed"], label="Function Selection", value="text2int")
|
166 |
-
]
|
167 |
-
|
168 |
-
outputs_text2int = gr.Textbox(label="Output integer")
|
169 |
-
|
170 |
-
button_text2int = gr.Button("text2int")
|
171 |
-
|
172 |
-
button_text2int.click(
|
173 |
-
fn=text2int_selector,
|
174 |
-
inputs=inputs_text2int,
|
175 |
-
outputs=outputs_text2int,
|
176 |
-
api_name="text2int",
|
177 |
-
)
|
178 |
-
|
179 |
-
examples_text2int = [
|
180 |
-
["one thousand forty seven", "text2int"],
|
181 |
-
["one hundred", "text2int_preprocessed"],
|
182 |
-
]
|
183 |
-
|
184 |
-
gr.Examples(examples=examples_text2int, inputs=inputs_text2int)
|
185 |
-
|
186 |
-
inputs_sentiment = [
|
187 |
-
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
|
188 |
-
value="I really like it!"),
|
189 |
-
]
|
190 |
-
|
191 |
-
outputs_sentiment = gr.Textbox(label="Sentiment result")
|
192 |
-
|
193 |
-
button_sentiment = gr.Button("sentiment analysis")
|
194 |
-
|
195 |
-
button_sentiment.click(
|
196 |
-
get_sentiment,
|
197 |
-
inputs=inputs_sentiment,
|
198 |
-
outputs=outputs_sentiment,
|
199 |
-
api_name="sentiment-analysis"
|
200 |
-
)
|
201 |
-
|
202 |
-
examples_sentiment = [
|
203 |
-
["Couldn't agree more!"],
|
204 |
-
["Sorry, I can not accept this!"],
|
205 |
-
]
|
206 |
-
|
207 |
-
gr.Examples(examples=examples_sentiment, inputs=inputs_sentiment)
|
208 |
-
|
209 |
-
gr.Markdown(r"""
|
210 |
|
211 |
-
|
|
|
|
|
|
|
|
|
212 |
|
213 |
-
|
214 |
-
import requests
|
215 |
|
216 |
-
|
217 |
-
url="https://tangibleai-mathtext.hf.space/run/text2int", json={"data": ["one hundred forty five", "text2int"]}
|
218 |
-
).json()
|
219 |
-
```
|
220 |
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
# interface = gr.Interface(lambda x: x, inputs=["text"], outputs=["text"])
|
229 |
# html_block.input_components = interface.input_components
|
|
|
138 |
|
139 |
routes.get_types = get_types
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
sentiment = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
142 |
|
143 |
|
|
|
146 |
|
147 |
|
148 |
with gr.Blocks() as html_block:
|
149 |
+
gr.Markdown("# Rori - Mathbot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
with gr.Tab("Text to integer"):
|
152 |
+
inputs_text2int = [
|
153 |
+
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
|
154 |
+
value="forty two"),
|
155 |
+
]
|
156 |
|
157 |
+
outputs_text2int = gr.Textbox(label="Output integer")
|
|
|
158 |
|
159 |
+
button_text2int = gr.Button("text2int")
|
|
|
|
|
|
|
160 |
|
161 |
+
button_text2int.click(
|
162 |
+
fn=try_text2int,
|
163 |
+
inputs=inputs_text2int,
|
164 |
+
outputs=outputs_text2int,
|
165 |
+
api_name="text2int",
|
166 |
+
)
|
167 |
|
168 |
+
examples_text2int = [
|
169 |
+
"one thousand forty seven",
|
170 |
+
"one hundred",
|
171 |
+
]
|
172 |
+
|
173 |
+
gr.Examples(examples=examples_text2int, inputs=inputs_text2int)
|
174 |
+
|
175 |
+
gr.Markdown(r"""
|
176 |
+
|
177 |
+
## API
|
178 |
+
```python
|
179 |
+
import requests
|
180 |
+
|
181 |
+
requests.post(
|
182 |
+
url="https://tangibleai-mathtext.hf.space/run/text2int", json={"data": ["one hundred forty five"]}
|
183 |
+
).json()
|
184 |
+
```
|
185 |
+
|
186 |
+
Or using `curl`:
|
187 |
+
|
188 |
+
```bash
|
189 |
+
curl -X POST https://tangibleai-mathtext.hf.space/run/text2int -H 'Content-Type: application/json' -d '{"data": ["one hundred forty five"]}'
|
190 |
+
```
|
191 |
+
{bq_json}""" + f"{json.loads(BQ_JSON)['type']}")
|
192 |
+
|
193 |
+
with gr.Tab("Text to integer preprocessed"):
|
194 |
+
inputs_text2int_preprocessed = [
|
195 |
+
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
|
196 |
+
value="forty two"),
|
197 |
+
]
|
198 |
+
|
199 |
+
outputs_text2int_preprocessed = gr.Textbox(label="Output integer")
|
200 |
+
|
201 |
+
button_text2int = gr.Button("text2int preprocessed")
|
202 |
+
|
203 |
+
button_text2int.click(
|
204 |
+
fn=try_text2int_preprocessed,
|
205 |
+
inputs=inputs_text2int_preprocessed,
|
206 |
+
outputs=outputs_text2int_preprocessed,
|
207 |
+
api_name="text2int_preprocessed",
|
208 |
+
)
|
209 |
+
|
210 |
+
examples_text2int_preprocessed = [
|
211 |
+
"one thousand forty seven",
|
212 |
+
"one hundred",
|
213 |
+
]
|
214 |
+
|
215 |
+
gr.Examples(examples=examples_text2int_preprocessed, inputs=inputs_text2int_preprocessed)
|
216 |
+
|
217 |
+
gr.Markdown(r"""
|
218 |
+
|
219 |
+
## API
|
220 |
+
```python
|
221 |
+
import requests
|
222 |
+
|
223 |
+
requests.post(
|
224 |
+
url="https://tangibleai-mathtext.hf.space/run/text2int_preprocessed", json={"data": ["one hundred forty five"]}
|
225 |
+
).json()
|
226 |
+
```
|
227 |
+
|
228 |
+
Or using `curl`:
|
229 |
+
|
230 |
+
```bash
|
231 |
+
curl -X POST https://tangibleai-mathtext.hf.space/run/text2int_preprocessed -H 'Content-Type: application/json' -d '{"data": ["one hundred forty five"]}'
|
232 |
+
```
|
233 |
+
{bq_json}""" + f"{json.loads(BQ_JSON)['type']}")
|
234 |
+
|
235 |
+
with gr.Tab("Sentiment Analysis"):
|
236 |
+
inputs_sentiment = [
|
237 |
+
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process",
|
238 |
+
value="I really like it!"),
|
239 |
+
]
|
240 |
+
|
241 |
+
outputs_sentiment = gr.Textbox(label="Sentiment result")
|
242 |
+
|
243 |
+
button_sentiment = gr.Button("sentiment analysis")
|
244 |
+
|
245 |
+
button_sentiment.click(
|
246 |
+
get_sentiment,
|
247 |
+
inputs=inputs_sentiment,
|
248 |
+
outputs=outputs_sentiment,
|
249 |
+
api_name="sentiment-analysis"
|
250 |
+
)
|
251 |
+
|
252 |
+
examples_sentiment = [
|
253 |
+
["Totally agree!"],
|
254 |
+
["Sorry, I can not accept this!"],
|
255 |
+
]
|
256 |
+
|
257 |
+
gr.Examples(examples=examples_sentiment, inputs=inputs_sentiment)
|
258 |
+
|
259 |
+
gr.Markdown(r"""
|
260 |
+
|
261 |
+
## API
|
262 |
+
```python
|
263 |
+
import requests
|
264 |
+
|
265 |
+
requests.post(
|
266 |
+
url="https://tangibleai-mathtext.hf.space/run/sentiment-analysis", json={"data": ["You are right!"]}
|
267 |
+
).json()
|
268 |
+
```
|
269 |
+
|
270 |
+
Or using `curl`:
|
271 |
+
|
272 |
+
```bash
|
273 |
+
curl -X POST https://tangibleai-mathtext.hf.space/run/sentiment-analysis -H 'Content-Type: application/json' -d '{"data": ["You are right!"]}'
|
274 |
+
```
|
275 |
+
{bq_json}""" + f"{json.loads(BQ_JSON)['type']}")
|
276 |
|
277 |
# interface = gr.Interface(lambda x: x, inputs=["text"], outputs=["text"])
|
278 |
# html_block.input_components = interface.input_components
|
plot_calls.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
df = pd.read_csv('call_history.csv') # data loading
|
5 |
+
print(df)
|
6 |
+
|
7 |
+
df.plot(by='endpoint', column='delay', kind='box', showmeans=True)
|
8 |
+
|
9 |
+
plt.show()
|
requirements.txt
CHANGED
@@ -5,3 +5,4 @@ gradio==3.14.0
|
|
5 |
python-dotenv
|
6 |
transformers
|
7 |
torch
|
|
|
|
5 |
python-dotenv
|
6 |
transformers
|
7 |
torch
|
8 |
+
httpx
|
test_api.py
CHANGED
@@ -3,61 +3,93 @@
|
|
3 |
import asyncio
|
4 |
import random
|
5 |
import time
|
6 |
-
|
7 |
import httpx
|
|
|
|
|
|
|
8 |
|
9 |
headers = {"Content-Type": "application/json; charset=utf-8"}
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
]
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
|
38 |
# async call to endpoint
|
39 |
-
async def call_api(url, data,
|
40 |
-
json = {"data": data}
|
41 |
async with httpx.AsyncClient() as client:
|
42 |
start = time.perf_counter() # Used perf_counter for more precise result.
|
43 |
response = await client.post(url=url, headers=headers, json=json, timeout=30)
|
44 |
end = time.perf_counter()
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
|
52 |
-
async def main(n):
|
53 |
-
calls = []
|
54 |
-
for num in range(n):
|
55 |
-
item = random.choice(data_remote)
|
56 |
-
url, data = item["url"], item["data"]
|
57 |
-
# calls.append(call_api(remote_url, data_list, num))
|
58 |
-
calls.append(call_api(url, data, num))
|
59 |
-
r = await asyncio.gather(*calls)
|
60 |
-
print(*r, sep="\n")
|
61 |
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
3 |
import asyncio
|
4 |
import random
|
5 |
import time
|
6 |
+
import pandas as pd
|
7 |
import httpx
|
8 |
+
from os.path import exists
|
9 |
+
|
10 |
+
NUMBER_OF_CALLS = 10
|
11 |
|
12 |
headers = {"Content-Type": "application/json; charset=utf-8"}
|
13 |
|
14 |
+
base_url = "https://tangibleai-mathtext.hf.space/run/{endpoint}"
|
15 |
+
# base_url = "http://localhost:7860/run/{endpoint}"
|
16 |
+
|
17 |
+
data_list_1 = {
|
18 |
+
"endpoint": "text2int",
|
19 |
+
"test_data": [
|
20 |
+
"one hundred forty five",
|
21 |
+
"twenty thousand nine hundred fifty",
|
22 |
+
"one hundred forty five",
|
23 |
+
"nine hundred eighty three",
|
24 |
+
"five million",
|
25 |
+
]
|
26 |
+
}
|
27 |
+
|
28 |
+
data_list_2 = {
|
29 |
+
"endpoint": "text2int_preprocessed",
|
30 |
+
"test_data": [
|
31 |
+
"one hundred forty five",
|
32 |
+
"twenty thousand nine hundred fifty",
|
33 |
+
"one hundred forty five",
|
34 |
+
"nine hundred eighty three",
|
35 |
+
"five million",
|
36 |
+
]
|
37 |
+
}
|
38 |
+
data_list_3 = {
|
39 |
+
"endpoint": "sentiment-analysis",
|
40 |
+
"test_data": [
|
41 |
+
"Totally agree",
|
42 |
+
"I like it",
|
43 |
+
"No more",
|
44 |
+
"I am not sure",
|
45 |
+
"Never",
|
46 |
+
]
|
47 |
+
}
|
48 |
|
49 |
|
50 |
# async call to endpoint
|
51 |
+
async def call_api(url, data, call_number, number_of_calls):
|
52 |
+
json = {"data": [data]}
|
53 |
async with httpx.AsyncClient() as client:
|
54 |
start = time.perf_counter() # Used perf_counter for more precise result.
|
55 |
response = await client.post(url=url, headers=headers, json=json, timeout=30)
|
56 |
end = time.perf_counter()
|
57 |
+
return {
|
58 |
+
"endpoint": url.split("/")[-1],
|
59 |
+
"test data": data,
|
60 |
+
"response": response.json().get("data"),
|
61 |
+
"call number": call_number,
|
62 |
+
"number of calls": number_of_calls,
|
63 |
+
"start": start.__round__(4),
|
64 |
+
"end": end.__round__(4),
|
65 |
+
"delay": (end - start).__round__(4)
|
66 |
+
}
|
67 |
+
|
68 |
+
|
69 |
+
data_lists = [data_list_1, data_list_2, data_list_3]
|
70 |
+
|
71 |
+
results = []
|
72 |
+
|
73 |
+
|
74 |
+
async def main(number_of_calls):
|
75 |
+
for data_list in data_lists:
|
76 |
+
calls = []
|
77 |
+
for call_number in range(1, number_of_calls + 1):
|
78 |
+
url = base_url.format(endpoint=data_list["endpoint"])
|
79 |
+
data = random.choice(data_list["test_data"])
|
80 |
+
calls.append(call_api(url, data, call_number, number_of_calls))
|
81 |
+
r = await asyncio.gather(*calls)
|
82 |
+
results.extend(r)
|
83 |
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
start = time.perf_counter()
|
87 |
+
asyncio.run(main(NUMBER_OF_CALLS))
|
88 |
+
end = time.perf_counter()
|
89 |
+
print(end-start)
|
90 |
+
df = pd.DataFrame(results)
|
91 |
|
92 |
+
if exists("call_history.csv"):
|
93 |
+
df.to_csv(path_or_buf="call_history.csv", mode="a", header=False, index=False)
|
94 |
+
else:
|
95 |
+
df.to_csv(path_or_buf="call_history.csv", mode="w", header=True, index=False)
|