Greg Thompson commited on
Commit
61c4e51
·
2 Parent(s): d6c4d03 9e2c41a

Add logging and error validation to nlu endpoint

Browse files
app.py CHANGED
@@ -1,33 +1,42 @@
1
  """FastAPI endpoint
2
  To run locally use 'uvicorn app:app --host localhost --port 7860'
 
 
3
  """
4
  import ast
5
- import scripts.quiz.generators as generators
6
- import scripts.quiz.hints as hints
7
- import scripts.quiz.questions as questions
8
- import scripts.quiz.utils as utils
 
9
  import sentry_sdk
10
 
11
  from fastapi import FastAPI, Request
12
  from fastapi.responses import JSONResponse
13
  from fastapi.staticfiles import StaticFiles
14
  from fastapi.templating import Jinja2Templates
15
- from mathtext.sentiment import sentiment
16
  from mathtext.text2int import text2int
17
- from pydantic import BaseModel
18
-
19
  from mathtext_fastapi.logging import prepare_message_data_for_logging
20
  from mathtext_fastapi.conversation_manager import manage_conversation_response
 
21
  from mathtext_fastapi.nlu import evaluate_message_with_nlu
22
  from mathtext_fastapi.nlu import run_intent_classification
 
 
 
 
 
 
 
23
 
24
  sentry_sdk.init(
25
- dsn="https://143c9ac3f429452eb036deda0e4d5aef@o1297809.ingest.sentry.io/4504896688881664",
26
 
27
  # Set traces_sample_rate to 1.0 to capture 100%
28
  # of transactions for performance monitoring.
29
  # We recommend adjusting this value in production,
30
- traces_sample_rate=0.20,
31
  )
32
 
33
  app = FastAPI()
@@ -57,11 +66,11 @@ def hello(content: Text = None):
57
  return JSONResponse(content=content)
58
 
59
 
60
- @app.post("/sentiment-analysis")
61
- def sentiment_analysis_ep(content: Text = None):
62
- ml_response = sentiment(content.content)
63
- content = {"message": ml_response}
64
- return JSONResponse(content=content)
65
 
66
 
67
  @app.post("/text2int")
@@ -71,7 +80,40 @@ def text2int_ep(content: Text = None):
71
  return JSONResponse(content=content)
72
 
73
 
74
- @app.post("/manager")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  async def programmatic_message_manager(request: Request):
76
  """
77
  Calls conversation management function to determine the next state
@@ -123,172 +165,205 @@ async def evaluate_user_message_with_nlu_api(request: Request):
123
  {'type':'integer', 'data': '8', 'confidence': 0}
124
  {'type':'sentiment', 'data': 'negative', 'confidence': 0.99}
125
  """
126
- data_dict = await request.json()
127
- message_data = data_dict.get('message_data', '')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  nlu_response = evaluate_message_with_nlu(message_data)
129
  return JSONResponse(content=nlu_response)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
131
 
132
- @app.post("/question")
133
  async def ask_math_question(request: Request):
134
- """Generate a question and return it as response along with question data
135
 
136
  Input
137
- request.body: json - amount of correct and incorrect answers in the account
138
  {
139
- 'number_correct': 0,
140
- 'number_incorrect': 0,
141
- 'level': 'easy'
142
  }
143
 
144
  Output
145
- context: dict - the information for the current state
146
  {
147
  'text': 'What is 1+2?',
148
- 'question_numbers': [1,2,3], #3 numbers - current number, ordinal number, times
149
- 'right_answer': 3,
150
- 'number_correct': 0,
151
- 'number_incorrect': 0,
152
- 'hints_used': 0
153
  }
154
  """
155
  data_dict = await request.json()
156
  message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
157
- right_answers = message_data['number_correct']
158
- wrong_answers = message_data['number_incorrect']
159
- level = message_data['level']
160
 
161
- return JSONResponse(generators.start_interactive_math(right_answers, wrong_answers, level))
162
 
163
 
164
  @app.post("/hint")
165
  async def get_hint(request: Request):
166
- """Generate a hint and return it as response along with hint data
167
 
168
  Input
169
- request.body:
170
  {
171
- 'question_numbers': [1,2,3], #3 numbers - current number, ordinal number, times
172
- 'right_answer': 3,
173
- 'number_correct': 0,
174
- 'number_incorrect': 0,
175
- 'level': 'easy',
176
- 'hints_used': 0
177
  }
178
 
179
  Output
180
- context: dict - the information for the current state
181
  {
182
- 'text': 'What is 1+2?',
183
- 'question_numbers': [1,2,3], #2 or 3 numbers
184
- 'right_answer': 3,
185
- 'number_correct': 0,
186
- 'number_incorrect': 0,
187
- 'level': 'easy',
188
- 'hints_used': 0
189
  }
190
  """
191
  data_dict = await request.json()
192
  message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
193
- question_numbers = message_data['question_numbers']
194
- right_answer = message_data['right_answer']
195
- number_correct = message_data['number_correct']
196
- number_incorrect = message_data['number_incorrect']
197
- level = message_data['level']
198
- hints_used = message_data['hints_used']
199
 
200
- return JSONResponse(hints.generate_hint(question_numbers, right_answer, number_correct, number_incorrect, level, hints_used))
201
 
202
 
203
- @app.post("/generate_question")
204
- async def generate_question(request: Request):
205
- """Generate a bare question and return it as response
206
 
207
  Input
208
- request.body: json - level
209
  {
210
- 'level': 'easy'
 
 
211
  }
212
 
213
  Output
214
- context: dict - the information for the current state
215
  {
216
- "question": "Let's count up by 2s. What number is next if we start from 10?
217
- 6 8 10 ..."
 
 
218
  }
219
  """
220
  data_dict = await request.json()
221
  message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
222
- level = message_data['level']
 
 
 
 
 
 
 
223
 
224
- return JSONResponse(questions.generate_question_data(level)['question'])
225
 
226
 
227
- @app.post("/numbers_by_level")
228
- async def get_numbers_by_level(request: Request):
229
- """Generate three numbers and return them as response
230
 
231
  Input
232
- request.body: json - level
233
  {
234
- 'level': 'easy'
 
235
  }
236
 
237
- Output
238
- context: dict - three generated numbers for specified level
239
- {
240
- "current_number": 10,
241
- "ordinal_number": 2,
242
- "times": 1
243
- }
244
  """
245
  data_dict = await request.json()
246
  message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
247
- level = message_data['level']
248
- return JSONResponse(questions.generate_numbers_by_level(level))
 
 
249
 
250
 
251
- @app.post("/number_sequence")
252
- async def get_number_sequence(request: Request):
253
- """Generate a number sequence
254
 
255
  Input
256
- request.body: json - level
257
  {
258
- "current_number": 10,
259
- "ordinal_number": 2,
260
- "times": 1
261
  }
262
 
263
- Output
264
- one of following strings with (numbers differ):
265
- ... 1 2 3
266
- 1 2 3 ...
267
  """
268
  data_dict = await request.json()
269
  message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
270
- cur_num = message_data['current_number']
271
- ord_num = message_data['ordinal_number']
272
- times = message_data['times']
273
- return JSONResponse(questions.generate_number_sequence(cur_num, ord_num, times))
 
 
 
274
 
 
275
 
276
- @app.post("/level")
277
- async def get_next_level(request: Request):
278
- """Depending on current level and desire to level up/down return next level
 
279
 
280
  Input
281
- request.body: json - level
282
  {
283
- "current_level": "easy",
284
- "level_up": True
 
285
  }
286
 
287
  Output
288
- Literal - "easy", "medium" or "hard"
289
  """
290
  data_dict = await request.json()
291
  message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
292
- cur_level = message_data['current_level']
293
- level_up = message_data['level_up']
294
- return JSONResponse(utils.get_next_level(cur_level, level_up))
 
 
 
 
 
 
 
 
1
  """FastAPI endpoint
2
  To run locally use 'uvicorn app:app --host localhost --port 7860'
3
+ or
4
+ `python -m uvicorn app:app --reload --host localhost --port 7860`
5
  """
6
  import ast
7
+ import json
8
+ from json import JSONDecodeError
9
+ from logging import getLogger
10
+ import mathactive.microlessons.num_one as num_one_quiz
11
+ import os
12
  import sentry_sdk
13
 
14
  from fastapi import FastAPI, Request
15
  from fastapi.responses import JSONResponse
16
  from fastapi.staticfiles import StaticFiles
17
  from fastapi.templating import Jinja2Templates
18
+ # from mathtext.sentiment import sentiment
19
  from mathtext.text2int import text2int
 
 
20
  from mathtext_fastapi.logging import prepare_message_data_for_logging
21
  from mathtext_fastapi.conversation_manager import manage_conversation_response
22
+ from mathtext_fastapi.v2_conversation_manager import manage_conversation_response
23
  from mathtext_fastapi.nlu import evaluate_message_with_nlu
24
  from mathtext_fastapi.nlu import run_intent_classification
25
+ from pydantic import BaseModel
26
+
27
+
28
+ from dotenv import load_dotenv
29
+ load_dotenv()
30
+
31
+ log = getLogger(__name__)
32
 
33
  sentry_sdk.init(
34
+ dsn=os.environ.get('SENTRY_DSN'),
35
 
36
  # Set traces_sample_rate to 1.0 to capture 100%
37
  # of transactions for performance monitoring.
38
  # We recommend adjusting this value in production,
39
+ traces_sample_rate=1.0,
40
  )
41
 
42
  app = FastAPI()
 
66
  return JSONResponse(content=content)
67
 
68
 
69
+ # @app.post("/sentiment-analysis")
70
+ # def sentiment_analysis_ep(content: Text = None):
71
+ # ml_response = sentiment(content.content)
72
+ # content = {"message": ml_response}
73
+ # return JSONResponse(content=content)
74
 
75
 
76
  @app.post("/text2int")
 
80
  return JSONResponse(content=content)
81
 
82
 
83
+ @app.post("/v1/manager")
84
+ async def programmatic_message_manager(request: Request):
85
+ """
86
+ Calls conversation management function to determine the next state
87
+
88
+ Input
89
+ request.body: dict - message data for the most recent user response
90
+ {
91
+ "author_id": "+47897891",
92
+ "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09",
93
+ "author_type": "OWNER",
94
+ "message_body": "a test message",
95
+ "message_direction": "inbound",
96
+ "message_id": "ABJAK64jlk3-agjkl2QHFAFH",
97
+ "message_inserted_at": "2022-07-05T04:00:34.03352Z",
98
+ "message_updated_at": "2023-02-14T03:54:19.342950Z",
99
+ }
100
+
101
+ Output
102
+ context: dict - the information for the current state
103
+ {
104
+ "user": "47897891",
105
+ "state": "welcome-message-state",
106
+ "bot_message": "Welcome to Rori!",
107
+ "user_message": "",
108
+ "type": "ask"
109
+ }
110
+ """
111
+ data_dict = await request.json()
112
+ context = manage_conversation_response(data_dict)
113
+ return JSONResponse(context)
114
+
115
+
116
+ @app.post("/v2/manager")
117
  async def programmatic_message_manager(request: Request):
118
  """
119
  Calls conversation management function to determine the next state
 
165
  {'type':'integer', 'data': '8', 'confidence': 0}
166
  {'type':'sentiment', 'data': 'negative', 'confidence': 0.99}
167
  """
168
+ log.info(f'Received request: {request}')
169
+ log.info(f'Request header: {request.headers}')
170
+ request_body = await request.body()
171
+ log.info(f'Request body: {request_body}')
172
+ request_body_str = request_body.decode()
173
+ log.info(f'Request_body_str: {request_body_str}')
174
+
175
+ try:
176
+ data_dict = await request.json()
177
+ except JSONDecodeError:
178
+ log.error(f'Request.json failed: {dir(request)}')
179
+ data_dict = {}
180
+ message_data = data_dict.get('message_data')
181
+
182
+ if not message_data:
183
+ log.error(f'Data_dict: {data_dict}')
184
+ message_data = data_dict.get('message', {})
185
  nlu_response = evaluate_message_with_nlu(message_data)
186
  return JSONResponse(content=nlu_response)
187
+
188
+
189
+ @app.post("/num_one")
190
+ async def num_one(request: Request):
191
+ """
192
+ Input:
193
+ {
194
+ "user_id": 1,
195
+ "message_text": 5,
196
+ }
197
+ Output:
198
+ {
199
+ 'messages':
200
+ ["Let's", 'practice', 'counting', '', '', '46...', '47...', '48...', '49', '', '', 'After', '49,', 'what', 'is', 'the', 'next', 'number', 'you', 'will', 'count?\n46,', '47,', '48,', '49'],
201
+ 'input_prompt': '50',
202
+ 'state': 'question'
203
+ }
204
+ """
205
+ data_dict = await request.json()
206
+ message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
207
+ user_id = message_data['user_id']
208
+ message_text = message_data['message_text']
209
+ return num_one_quiz.process_user_message(user_id, message_text)
210
 
211
 
212
+ @app.post("/start")
213
  async def ask_math_question(request: Request):
214
+ """Generate a question data
215
 
216
  Input
 
217
  {
218
+ 'difficulty': 0.1,
219
+ 'do_increase': True | False
 
220
  }
221
 
222
  Output
 
223
  {
224
  'text': 'What is 1+2?',
225
+ 'difficulty': 0.2,
226
+ 'question_numbers': [3, 1, 4]
 
 
 
227
  }
228
  """
229
  data_dict = await request.json()
230
  message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
231
+ difficulty = message_data['difficulty']
232
+ do_increase = message_data['do_increase']
 
233
 
234
+ return JSONResponse(generators.start_interactive_math(difficulty, do_increase))
235
 
236
 
237
  @app.post("/hint")
238
  async def get_hint(request: Request):
239
+ """Generate a hint data
240
 
241
  Input
 
242
  {
243
+ 'start': 5,
244
+ 'step': 1,
245
+ 'difficulty': 0.1
 
 
 
246
  }
247
 
248
  Output
 
249
  {
250
+ 'text': 'What number is greater than 4 and less than 6?',
251
+ 'difficulty': 0.1,
252
+ 'question_numbers': [5, 1, 6]
 
 
 
 
253
  }
254
  """
255
  data_dict = await request.json()
256
  message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
257
+ start = message_data['start']
258
+ step = message_data['step']
259
+ difficulty = message_data['difficulty']
 
 
 
260
 
261
+ return JSONResponse(hints.generate_hint(start, step, difficulty))
262
 
263
 
264
+ @app.post("/question")
265
+ async def ask_math_question(request: Request):
266
+ """Generate a question data
267
 
268
  Input
 
269
  {
270
+ 'start': 5,
271
+ 'step': 1,
272
+ 'question_num': 1 # optional
273
  }
274
 
275
  Output
 
276
  {
277
+ 'question': 'What is 1+2?',
278
+ 'start': 5,
279
+ 'step': 1,
280
+ 'answer': 6
281
  }
282
  """
283
  data_dict = await request.json()
284
  message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
285
+ start = message_data['start']
286
+ step = message_data['step']
287
+ arg_tuple = (start, step)
288
+ try:
289
+ question_num = message_data['question_num']
290
+ arg_tuple += (question_num,)
291
+ except KeyError:
292
+ pass
293
 
294
+ return JSONResponse(questions.generate_question_data(*arg_tuple))
295
 
296
 
297
+ @app.post("/difficulty")
298
+ async def get_hint(request: Request):
299
+ """Generate a number matching difficulty
300
 
301
  Input
 
302
  {
303
+ 'difficulty': 0.01,
304
+ 'do_increase': True
305
  }
306
 
307
+ Output - value from 0.01 to 0.99 inclusively:
308
+ 0.09
 
 
 
 
 
309
  """
310
  data_dict = await request.json()
311
  message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
312
+ difficulty = message_data['difficulty']
313
+ do_increase = message_data['do_increase']
314
+
315
+ return JSONResponse(utils.get_next_difficulty(difficulty, do_increase))
316
 
317
 
318
+ @app.post("/start_step")
319
+ async def get_hint(request: Request):
320
+ """Generate a start and step values
321
 
322
  Input
 
323
  {
324
+ 'difficulty': 0.01,
325
+ 'path_to_csv_file': 'scripts/quiz/data.csv' # optional
 
326
  }
327
 
328
+ Output - tuple (start, step):
329
+ (5, 1)
 
 
330
  """
331
  data_dict = await request.json()
332
  message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
333
+ difficulty = message_data['difficulty']
334
+ arg_tuple = (difficulty,)
335
+ try:
336
+ path_to_csv_file = message_data['path_to_csv_file']
337
+ arg_tuple += (path_to_csv_file,)
338
+ except KeyError:
339
+ pass
340
 
341
+ return JSONResponse(utils.get_next_difficulty(*arg_tuple))
342
 
343
+
344
+ @app.post("/sequence")
345
+ async def generate_question(request: Request):
346
+ """Generate a sequence from start, step and optional separator parameter
347
 
348
  Input
 
349
  {
350
+ 'start': 5,
351
+ 'step': 1,
352
+ 'sep': ', ' # optional
353
  }
354
 
355
  Output
356
+ 5, 6, 7
357
  """
358
  data_dict = await request.json()
359
  message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
360
+ start = message_data['start']
361
+ step = message_data['step']
362
+ arg_tuple = (start, step)
363
+ try:
364
+ sep = message_data['sep']
365
+ arg_tuple += (sep,)
366
+ except KeyError:
367
+ pass
368
+
369
+ return JSONResponse(utils.convert_sequence_to_string(*arg_tuple))
mathtext_fastapi/conversation_manager.py CHANGED
@@ -14,8 +14,8 @@ from mathtext_fastapi.math_subtraction_fsm import MathSubtractionFSM
14
  from supabase import create_client
15
  from transitions import Machine
16
 
17
- from scripts.quiz.generators import start_interactive_math
18
- from scripts.quiz.hints import generate_hint
19
 
20
  load_dotenv()
21
 
@@ -39,6 +39,7 @@ def create_text_message(message_text, whatsapp_id):
39
  "preview_url": False,
40
  "recipient_type": "individual",
41
  "to": whatsapp_id,
 
42
  "type": "text",
43
  "text": {
44
  "body": message_text
@@ -136,6 +137,9 @@ def manage_math_quiz_fsm(user_message, contact_uuid, type):
136
 
137
  # Make a completely new entry
138
  if fsm_check.data == []:
 
 
 
139
  if type == 'addition':
140
  math_quiz_state_machine = MathQuizFSM()
141
  else:
 
14
  from supabase import create_client
15
  from transitions import Machine
16
 
17
+ from mathactive.generators import start_interactive_math
18
+ from mathactive.hints import generate_hint
19
 
20
  load_dotenv()
21
 
 
39
  "preview_url": False,
40
  "recipient_type": "individual",
41
  "to": whatsapp_id,
42
+ # FIXME: Better to use "message_type" (but be careful with refactor)
43
  "type": "text",
44
  "text": {
45
  "body": message_text
 
137
 
138
  # Make a completely new entry
139
  if fsm_check.data == []:
140
+ # FIXME: Try not to use the Python reserved keyword `type` as a variable name
141
+ # It's better to use `kind` or `convo_type` or `convo_name`
142
+ # And the variable `type` is not defined here so I don't understand how this is working at all.
143
  if type == 'addition':
144
  math_quiz_state_machine = MathQuizFSM()
145
  else:
mathtext_fastapi/curriculum_mapper.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import re
4
+
5
+ from pathlib import Path
6
+
7
+
8
+ def read_and_preprocess_spreadsheet(file_name):
9
+ """ Creates a pandas dataframe from the curriculum overview spreadsheet """
10
+ DATA_DIR = Path(__file__).parent.parent / "mathtext_fastapi" / "data" / file_name
11
+ script_df = pd.read_excel(DATA_DIR, engine='openpyxl')
12
+ # Ensures the grade level columns are integers instead of floats
13
+ script_df.columns = script_df.columns[:2].tolist() + script_df.columns[2:11].astype(int).astype(str).tolist() + script_df.columns[11:].tolist()
14
+ script_df.fillna('', inplace=True)
15
+ return script_df
16
+
17
+
18
+ def extract_skill_code(skill):
19
+ """ Looks within a curricular skill description for its descriptive code
20
+
21
+ Input
22
+ - skill: str - a brief description of a curricular skill
23
+
24
+ >>> extract_skill_code('A3.3.4 - Solve inequalities')
25
+ 'A3.3.4'
26
+ >>> extract_skill_code('A3.3.2 - Graph linear equations, and identify the x- and y-intercepts or the slope of a line')
27
+ 'A3.3.2'
28
+ """
29
+ pattern = r'[A-Z][0-9]\.\d+\.\d+'
30
+ result = re.search(pattern, skill)
31
+ return result.group()
32
+
33
+
34
+ def build_horizontal_transitions(script_df):
35
+ """ Build a list of transitional relationships within a curricular skill
36
+
37
+ Inputs
38
+ - script_df: pandas dataframe - an overview of the curriculum skills by grade level
39
+
40
+ Output
41
+ - horizontal_transitions: array of arrays - transition data with label, from state, and to state
42
+
43
+ >>> script_df = read_and_preprocess_spreadsheet('curriculum_framework_for_tests.xlsx')
44
+ >>> build_horizontal_transitions(script_df)
45
+ [['right', 'N1.1.1_G1', 'N1.1.1_G2'], ['right', 'N1.1.1_G2', 'N1.1.1_G3'], ['right', 'N1.1.1_G3', 'N1.1.1_G4'], ['right', 'N1.1.1_G4', 'N1.1.1_G5'], ['right', 'N1.1.1_G5', 'N1.1.1_G6'], ['left', 'N1.1.1_G6', 'N1.1.1_G5'], ['left', 'N1.1.1_G5', 'N1.1.1_G4'], ['left', 'N1.1.1_G4', 'N1.1.1_G3'], ['left', 'N1.1.1_G3', 'N1.1.1_G2'], ['left', 'N1.1.1_G2', 'N1.1.1_G1'], ['right', 'N1.1.2_G1', 'N1.1.2_G2'], ['right', 'N1.1.2_G2', 'N1.1.2_G3'], ['right', 'N1.1.2_G3', 'N1.1.2_G4'], ['right', 'N1.1.2_G4', 'N1.1.2_G5'], ['right', 'N1.1.2_G5', 'N1.1.2_G6'], ['left', 'N1.1.2_G6', 'N1.1.2_G5'], ['left', 'N1.1.2_G5', 'N1.1.2_G4'], ['left', 'N1.1.2_G4', 'N1.1.2_G3'], ['left', 'N1.1.2_G3', 'N1.1.2_G2'], ['left', 'N1.1.2_G2', 'N1.1.2_G1']]
46
+ """
47
+ horizontal_transitions = []
48
+ for index, row in script_df.iterrows():
49
+ skill_code = extract_skill_code(row['Knowledge or Skill'])
50
+
51
+ rightward_matches = []
52
+ for i in range(9):
53
+ # Grade column
54
+ current_grade = i+1
55
+ if row[current_grade].lower().strip() == 'x':
56
+ rightward_matches.append(i)
57
+
58
+ for match in rightward_matches:
59
+ if rightward_matches[-1] != match:
60
+ horizontal_transitions.append([
61
+ "right",
62
+ f"{skill_code}_G{match}",
63
+ f"{skill_code}_G{match+1}"
64
+ ])
65
+
66
+ leftward_matches = []
67
+ for i in reversed(range(9)):
68
+ current_grade = i
69
+ if row[current_grade].lower().strip() == 'x':
70
+ leftward_matches.append(i)
71
+
72
+ for match in leftward_matches:
73
+ if leftward_matches[0] != match:
74
+ horizontal_transitions.append([
75
+ "left",
76
+ f"{skill_code}_G{match}",
77
+ f"{skill_code}_G{match-1}"
78
+ ])
79
+
80
+ return horizontal_transitions
81
+
82
+
83
+ def gather_all_vertical_matches(script_df):
84
+ """ Build a list of transitional relationships within a grade level across skills
85
+
86
+ Inputs
87
+ - script_df: pandas dataframe - an overview of the curriculum skills by grade level
88
+
89
+ Output
90
+ - all_matches: array of arrays - represents skills at each grade level
91
+
92
+ >>> script_df = read_and_preprocess_spreadsheet('curriculum_framework_for_tests.xlsx')
93
+ >>> gather_all_vertical_matches(script_df)
94
+ [['N1.1.1', '1'], ['N1.1.2', '1'], ['N1.1.1', '2'], ['N1.1.2', '2'], ['N1.1.1', '3'], ['N1.1.2', '3'], ['N1.1.1', '4'], ['N1.1.2', '4'], ['N1.1.1', '5'], ['N1.1.2', '5'], ['N1.1.1', '6'], ['N1.1.2', '6']]
95
+ """
96
+ all_matches = []
97
+ columns = ['1', '2', '3', '4', '5', '6', '7', '8', '9']
98
+
99
+ for column in columns:
100
+ for index, value in script_df[column].iteritems():
101
+ row_num = index + 1
102
+ if value == 'x':
103
+ # Extract skill code
104
+ skill_code = extract_skill_code(
105
+ script_df['Knowledge or Skill'][row_num-1]
106
+ )
107
+
108
+ all_matches.append([skill_code, column])
109
+ return all_matches
110
+
111
+
112
+ def build_vertical_transitions(script_df):
113
+ """ Build a list of transitional relationships within a grade level across skills
114
+
115
+ Inputs
116
+ - script_df: pandas dataframe - an overview of the curriculum skills by grade level
117
+
118
+ Output
119
+ - vertical_transitions: array of arrays - transition data with label, from state, and to state
120
+
121
+ >>> script_df = read_and_preprocess_spreadsheet('curriculum_framework_for_tests.xlsx')
122
+ >>> build_vertical_transitions(script_df)
123
+ [['down', 'N1.1.1_G1', 'N1.1.2_G1'], ['down', 'N1.1.2_G1', 'N1.1.1_G1'], ['down', 'N1.1.1_G2', 'N1.1.2_G2'], ['down', 'N1.1.2_G2', 'N1.1.1_G2'], ['down', 'N1.1.1_G3', 'N1.1.2_G3'], ['down', 'N1.1.2_G3', 'N1.1.1_G3'], ['down', 'N1.1.1_G4', 'N1.1.2_G4'], ['down', 'N1.1.2_G4', 'N1.1.1_G4'], ['down', 'N1.1.1_G5', 'N1.1.2_G5'], ['down', 'N1.1.2_G5', 'N1.1.1_G5'], ['down', 'N1.1.1_G6', 'N1.1.2_G6'], ['up', 'N1.1.2_G6', 'N1.1.1_G6'], ['up', 'N1.1.1_G6', 'N1.1.2_G6'], ['up', 'N1.1.2_G5', 'N1.1.1_G5'], ['up', 'N1.1.1_G5', 'N1.1.2_G5'], ['up', 'N1.1.2_G4', 'N1.1.1_G4'], ['up', 'N1.1.1_G4', 'N1.1.2_G4'], ['up', 'N1.1.2_G3', 'N1.1.1_G3'], ['up', 'N1.1.1_G3', 'N1.1.2_G3'], ['up', 'N1.1.2_G2', 'N1.1.1_G2'], ['up', 'N1.1.1_G2', 'N1.1.2_G2'], ['up', 'N1.1.2_G1', 'N1.1.1_G1']]
124
+ """
125
+ vertical_transitions = []
126
+
127
+ all_matches = gather_all_vertical_matches(script_df)
128
+
129
+ # Downward
130
+ for index, match in enumerate(all_matches):
131
+ skill = match[0]
132
+ row_num = match[1]
133
+ if all_matches[-1] != match:
134
+ vertical_transitions.append([
135
+ "down",
136
+ f"{skill}_G{row_num}",
137
+ f"{all_matches[index+1][0]}_G{row_num}"
138
+ ])
139
+
140
+ # Upward
141
+ for index, match in reversed(list(enumerate(all_matches))):
142
+ skill = match[0]
143
+ row_num = match[1]
144
+ if all_matches[0] != match:
145
+ vertical_transitions.append([
146
+ "up",
147
+ f"{skill}_G{row_num}",
148
+ f"{all_matches[index-1][0]}_G{row_num}"
149
+ ])
150
+
151
+ return vertical_transitions
152
+
153
+
154
+ def build_all_states(all_transitions):
155
+ """ Creates an array with all state labels for the curriculum
156
+
157
+ Input
158
+ - all_transitions: list of lists - all possible up, down, left, or right transitions in curriculum
159
+
160
+ Output
161
+ - all_states: list - a collection of state labels (skill code and grade number)
162
+
163
+ >>> all_transitions = [['right', 'N1.1.1_G1', 'N1.1.1_G2'], ['right', 'N1.1.1_G2', 'N1.1.1_G3'], ['right', 'N1.1.1_G3', 'N1.1.1_G4'], ['right', 'N1.1.1_G4', 'N1.1.1_G5'], ['right', 'N1.1.1_G5', 'N1.1.1_G6'], ['left', 'N1.1.1_G6', 'N1.1.1_G5'], ['left', 'N1.1.1_G5', 'N1.1.1_G4'], ['left', 'N1.1.1_G4', 'N1.1.1_G3'], ['left', 'N1.1.1_G3', 'N1.1.1_G2'], ['left', 'N1.1.1_G2', 'N1.1.1_G1'], ['right', 'N1.1.2_G1', 'N1.1.2_G2'], ['right', 'N1.1.2_G2', 'N1.1.2_G3'], ['right', 'N1.1.2_G3', 'N1.1.2_G4'], ['right', 'N1.1.2_G4', 'N1.1.2_G5'], ['right', 'N1.1.2_G5', 'N1.1.2_G6'], ['left', 'N1.1.2_G6', 'N1.1.2_G5'], ['left', 'N1.1.2_G5', 'N1.1.2_G4'], ['left', 'N1.1.2_G4', 'N1.1.2_G3'], ['left', 'N1.1.2_G3', 'N1.1.2_G2'], ['left', 'N1.1.2_G2', 'N1.1.2_G1'], ['down', 'N1.1.1_G1', 'N1.1.2_G1'], ['down', 'N1.1.2_G1', 'N1.1.1_G1'], ['down', 'N1.1.1_G2', 'N1.1.2_G2'], ['down', 'N1.1.2_G2', 'N1.1.1_G2'], ['down', 'N1.1.1_G3', 'N1.1.2_G3'], ['down', 'N1.1.2_G3', 'N1.1.1_G3'], ['down', 'N1.1.1_G4', 'N1.1.2_G4'], ['down', 'N1.1.2_G4', 'N1.1.1_G4'], ['down', 'N1.1.1_G5', 'N1.1.2_G5'], ['down', 'N1.1.2_G5', 'N1.1.1_G5'], ['down', 'N1.1.1_G6', 'N1.1.2_G6'], ['up', 'N1.1.2_G6', 'N1.1.1_G6'], ['up', 'N1.1.1_G6', 'N1.1.2_G6'], ['up', 'N1.1.2_G5', 'N1.1.1_G5'], ['up', 'N1.1.1_G5', 'N1.1.2_G5'], ['up', 'N1.1.2_G4', 'N1.1.1_G4'], ['up', 'N1.1.1_G4', 'N1.1.2_G4'], ['up', 'N1.1.2_G3', 'N1.1.1_G3'], ['up', 'N1.1.1_G3', 'N1.1.2_G3'], ['up', 'N1.1.2_G2', 'N1.1.1_G2'], ['up', 'N1.1.1_G2', 'N1.1.2_G2'], ['up', 'N1.1.2_G1', 'N1.1.1_G1']]
164
+ >>> build_all_states(all_transitions)
165
+ ['N1.1.1_G1', 'N1.1.1_G2', 'N1.1.1_G3', 'N1.1.1_G4', 'N1.1.1_G5', 'N1.1.1_G6', 'N1.1.2_G1', 'N1.1.2_G2', 'N1.1.2_G3', 'N1.1.2_G4', 'N1.1.2_G5', 'N1.1.2_G6']
166
+ """
167
+ all_states = []
168
+ for transition in all_transitions:
169
+ for index, state in enumerate(transition):
170
+ if index == 0:
171
+ continue
172
+ if state not in all_states:
173
+ all_states.append(state)
174
+ return all_states
175
+
176
+
177
+ def build_curriculum_logic():
178
+ script_df = read_and_preprocess_spreadsheet('Rori_Framework_v1.xlsx')
179
+ horizontal_transitions = build_horizontal_transitions(script_df)
180
+ vertical_transitions = build_vertical_transitions(script_df)
181
+ all_transitions = horizontal_transitions + vertical_transitions
182
+ all_states = build_all_states(all_transitions)
183
+ return all_states, all_transitions
mathtext_fastapi/data/Rori_Framework_v1.xlsx ADDED
Binary file (420 kB). View file
 
mathtext_fastapi/data/curriculum_framework_for_tests.xlsx ADDED
Binary file (510 kB). View file
 
mathtext_fastapi/data/text2int_results.csv CHANGED
@@ -20,10 +20,10 @@ eight oh,80.0,8.0,False
20
  eighty,80.0,80.0,True
21
  ate,8.0,1.0,False
22
  double eight,88.0,8.0,False
23
- eight three seven five three O nine,8375309.0,8375329.0,False
24
  eight three seven five three oh nine,8375309.0,8375309.0,True
25
  eight three seven five three zero nine,8375309.0,8375309.0,True
26
- eight three seven five three oh ni-ee-ine,8375309.0,837530619.0,False
27
  two eight,28.0,16.0,False
28
  seven oh eleven,7011.0,77.0,False
29
  seven elevens,77.0,77.0,True
@@ -31,10 +31,10 @@ seven eleven,711.0,77.0,False
31
  ninety nine oh five,9905.0,149.0,False
32
  seven 0 seven 0 seven 0 seven,7070707.0,7070707.0,True
33
  123 hundred,123000.0,223.0,False
34
- 5 o 5,505.0,525.0,False
35
- 15 o 5,1505.0,22.0,False
36
- 15-o 5,1505.0,22.0,False
37
- 15 o-5,1505.0,22.0,False
38
  911-thousand,911000.0,911000.0,True
39
  twenty-two twenty-two,2222.0,44.0,False
40
  twenty-two twenty-twos,484.0,44.0,False
 
20
  eighty,80.0,80.0,True
21
  ate,8.0,1.0,False
22
  double eight,88.0,8.0,False
23
+ eight three seven five three O nine,8375309.0,8375319.0,False
24
  eight three seven five three oh nine,8375309.0,8375309.0,True
25
  eight three seven five three zero nine,8375309.0,8375309.0,True
26
+ eight three seven five three oh ni-ee-ine,8375309.0,837530111.0,False
27
  two eight,28.0,16.0,False
28
  seven oh eleven,7011.0,77.0,False
29
  seven elevens,77.0,77.0,True
 
31
  ninety nine oh five,9905.0,149.0,False
32
  seven 0 seven 0 seven 0 seven,7070707.0,7070707.0,True
33
  123 hundred,123000.0,223.0,False
34
+ 5 o 5,505.0,515.0,False
35
+ 15 o 5,1505.0,21.0,False
36
+ 15-o 5,1505.0,21.0,False
37
+ 15 o-5,1505.0,21.0,False
38
  911-thousand,911000.0,911000.0,True
39
  twenty-two twenty-two,2222.0,44.0,False
40
  twenty-two twenty-twos,484.0,44.0,False
mathtext_fastapi/global_state_manager.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transitions import Machine
2
+ from mathtext_fastapi.curriculum_mapper import build_curriculum_logic
3
+
4
+ all_states, all_transitions = build_curriculum_logic()
5
+
6
+ class GlobalStateManager(object):
7
+ states = all_states
8
+
9
+ transitions = all_transitions
10
+
11
+ def __init__(
12
+ self,
13
+ initial_state='N1.1.1_G1',
14
+ ):
15
+ self.machine = Machine(
16
+ model=self,
17
+ states=GlobalStateManager.states,
18
+ transitions=GlobalStateManager.transitions,
19
+ initial=initial_state
20
+ )
21
+
22
+
23
+ curriculum = GlobalStateManager()
mathtext_fastapi/nlu.py CHANGED
@@ -1,15 +1,32 @@
 
 
 
 
 
1
  from fuzzywuzzy import fuzz
 
2
  from mathtext_fastapi.logging import prepare_message_data_for_logging
3
  from mathtext.sentiment import sentiment
4
- from mathtext.text2int import text2int
5
- from mathtext_fastapi.intent_classification import create_intent_classification_model, retrieve_intent_classification_model, predict_message_intent
6
- import re
 
 
 
 
 
 
 
 
 
 
 
7
 
8
 
9
- def build_nlu_response_object(type, data, confidence):
10
  """ Turns nlu results into an object to send back to Turn.io
11
  Inputs
12
- - type: str - the type of nlu run (integer or sentiment-analysis)
13
  - data: str/int - the student message
14
  - confidence: - the nlu confidence score (sentiment) or '' (integer)
15
 
@@ -19,7 +36,11 @@ def build_nlu_response_object(type, data, confidence):
19
  >>> build_nlu_response_object('sentiment', 'POSITIVE', 0.99)
20
  {'type': 'sentiment', 'data': 'POSITIVE', 'confidence': 0.99}
21
  """
22
- return {'type': type, 'data': data, 'confidence': confidence}
 
 
 
 
23
 
24
 
25
  # def test_for_float_or_int(message_data, message_text):
@@ -107,6 +128,16 @@ def run_intent_classification(message_text):
107
  'hint',
108
  'next',
109
  'stop',
 
 
 
 
 
 
 
 
 
 
110
  ]
111
 
112
  for command in commands:
@@ -121,6 +152,70 @@ def run_intent_classification(message_text):
121
  return nlu_response
122
 
123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
  def evaluate_message_with_nlu(message_data):
125
  """ Process a student's message using NLU functions and send the result
126
 
@@ -131,20 +226,19 @@ def evaluate_message_with_nlu(message_data):
131
  {'type': 'sentiment', 'data': 'NEGATIVE', 'confidence': 0.9997807145118713}
132
  """
133
  # Keeps system working with two different inputs - full and filtered @event object
 
 
 
 
 
 
 
134
  try:
135
- message_text = str(message_data['message_body'])
136
- except KeyError:
137
- message_data = {
138
- 'author_id': message_data['message']['_vnd']['v1']['chat']['owner'],
139
- 'author_type': message_data['message']['_vnd']['v1']['author']['type'],
140
- 'contact_uuid': message_data['message']['_vnd']['v1']['chat']['contact_uuid'],
141
- 'message_body': message_data['message']['text']['body'],
142
- 'message_direction': message_data['message']['_vnd']['v1']['direction'],
143
- 'message_id': message_data['message']['id'],
144
- 'message_inserted_at': message_data['message']['_vnd']['v1']['chat']['inserted_at'],
145
- 'message_updated_at': message_data['message']['_vnd']['v1']['chat']['updated_at'],
146
- }
147
- message_text = str(message_data['message_body'])
148
 
149
  # Run intent classification only for keywords
150
  intent_api_response = run_intent_classification(message_text)
@@ -154,7 +248,7 @@ def evaluate_message_with_nlu(message_data):
154
 
155
  number_api_resp = text2int(message_text.lower())
156
 
157
- if number_api_resp == 32202:
158
  # Run intent classification with logistic regression model
159
  predicted_label = predict_message_intent(message_text)
160
  if predicted_label['confidence'] > 0.01:
 
1
+ from collections.abc import Mapping
2
+ from logging import getLogger
3
+ import datetime as dt
4
+ from dateutil.parser import isoparse
5
+
6
  from fuzzywuzzy import fuzz
7
+ from mathtext_fastapi.intent_classification import predict_message_intent
8
  from mathtext_fastapi.logging import prepare_message_data_for_logging
9
  from mathtext.sentiment import sentiment
10
+ from mathtext.text2int import text2int, TOKENS2INT_ERROR_INT
11
+
12
+ log = getLogger(__name__)
13
+
14
+ PAYLOAD_VALUE_TYPES = {
15
+ 'author_id': str,
16
+ 'author_type': str,
17
+ 'contact_uuid': str,
18
+ 'message_body': str,
19
+ 'message_direction': str,
20
+ 'message_id': str,
21
+ 'message_inserted_at': str,
22
+ 'message_updated_at': str,
23
+ }
24
 
25
 
26
+ def build_nlu_response_object(nlu_type, data, confidence):
27
  """ Turns nlu results into an object to send back to Turn.io
28
  Inputs
29
+ - nlu_type: str - the type of nlu run (integer or sentiment-analysis)
30
  - data: str/int - the student message
31
  - confidence: - the nlu confidence score (sentiment) or '' (integer)
32
 
 
36
  >>> build_nlu_response_object('sentiment', 'POSITIVE', 0.99)
37
  {'type': 'sentiment', 'data': 'POSITIVE', 'confidence': 0.99}
38
  """
39
+ return {
40
+ 'type': nlu_type,
41
+ 'data': data,
42
+ 'confidence': confidence
43
+ }
44
 
45
 
46
  # def test_for_float_or_int(message_data, message_text):
 
128
  'hint',
129
  'next',
130
  'stop',
131
+ 'tired',
132
+ 'tomorrow',
133
+ 'finished',
134
+ 'help',
135
+ 'please',
136
+ 'understand',
137
+ 'question',
138
+ 'easier',
139
+ 'easy',
140
+ 'support'
141
  ]
142
 
143
  for command in commands:
 
152
  return nlu_response
153
 
154
 
155
+ def payload_is_valid(payload_object):
156
+ """
157
+ >>> payload_is_valid({'author_id': '+5555555', 'author_type': 'OWNER', 'contact_uuid': '3246-43ad-faf7qw-zsdhg-dgGdg', 'message_body': 'thirty one', 'message_direction': 'inbound', 'message_id': 'SDFGGwafada-DFASHA4aDGA', 'message_inserted_at': '2022-07-05T04:00:34.03352Z', 'message_updated_at': '2023-04-06T10:08:23.745072Z'})
158
+ True
159
+
160
+ >>> payload_is_valid({"author_id": "@event.message._vnd.v1.chat.owner", "author_type": "@event.message._vnd.v1.author.type", "contact_uuid": "@event.message._vnd.v1.chat.contact_uuid", "message_body": "@event.message.text.body", "message_direction": "@event.message._vnd.v1.direction", "message_id": "@event.message.id", "message_inserted_at": "@event.message._vnd.v1.chat.inserted_at", "message_updated_at": "@event.message._vnd.v1.chat.updated_at"})
161
+ False
162
+ """
163
+ try:
164
+ isinstance(
165
+ isoparse(payload_object.get('message_inserted_at','')),
166
+ dt.datetime
167
+ )
168
+ isinstance(
169
+ isoparse(payload_object.get('message_updated_at','')),
170
+ dt.datetime
171
+ )
172
+ except ValueError:
173
+ return False
174
+ return (
175
+ isinstance(payload_object, Mapping) and
176
+ isinstance(payload_object.get('author_id'), str) and
177
+ isinstance(payload_object.get('author_type'), str) and
178
+ isinstance(payload_object.get('contact_uuid'), str) and
179
+ isinstance(payload_object.get('message_body'), str) and
180
+ isinstance(payload_object.get('message_direction'), str) and
181
+ isinstance(payload_object.get('message_id'), str) and
182
+ isinstance(payload_object.get('message_inserted_at'), str) and
183
+ isinstance(payload_object.get('message_updated_at'), str)
184
+ )
185
+
186
+
187
+ def log_payload_errors(payload_object):
188
+ errors = []
189
+ try:
190
+ assert isinstance(payload_object, Mapping)
191
+ except Exception as e:
192
+ log.error(f'Invalid HTTP request payload object: {e}')
193
+ errors.append(e)
194
+ for k, typ in PAYLOAD_VALUE_TYPES.items():
195
+ try:
196
+ assert isinstance(payload_object.get(k), typ)
197
+ except Exception as e:
198
+ log.error(f'Invalid HTTP request payload object: {e}')
199
+ errors.append(e)
200
+ try:
201
+ assert isinstance(
202
+ dt.datetime.fromisoformat(payload_object.get('message_inserted_at')),
203
+ dt.datetime
204
+ )
205
+ except Exception as e:
206
+ log.error(f'Invalid HTTP request payload object: {e}')
207
+ errors.append(e)
208
+ try:
209
+ isinstance(
210
+ dt.datetime.fromisoformat(payload_object.get('message_updated_at')),
211
+ dt.datetime
212
+ )
213
+ except Exception as e:
214
+ log.error(f'Invalid HTTP request payload object: {e}')
215
+ errors.append(e)
216
+ return errors
217
+
218
+
219
  def evaluate_message_with_nlu(message_data):
220
  """ Process a student's message using NLU functions and send the result
221
 
 
226
  {'type': 'sentiment', 'data': 'NEGATIVE', 'confidence': 0.9997807145118713}
227
  """
228
  # Keeps system working with two different inputs - full and filtered @event object
229
+ # Call validate payload
230
+ log.info(f'Starting evaluate message: {message_data}')
231
+
232
+ if not payload_is_valid(message_data):
233
+ log_payload_errors(message_data)
234
+ return {'type': 'error', 'data': TOKENS2INT_ERROR_INT, 'confidence': 0}
235
+
236
  try:
237
+ message_text = str(message_data.get('message_body', ''))
238
+ except:
239
+ log.error(f'Invalid request payload: {message_data}')
240
+ # use python logging system to do this//
241
+ return {'type': 'error', 'data': TOKENS2INT_ERROR_INT, 'confidence': 0}
 
 
 
 
 
 
 
 
242
 
243
  # Run intent classification only for keywords
244
  intent_api_response = run_intent_classification(message_text)
 
248
 
249
  number_api_resp = text2int(message_text.lower())
250
 
251
+ if number_api_resp == TOKENS2INT_ERROR_INT:
252
  # Run intent classification with logistic regression model
253
  predicted_label = predict_message_intent(message_text)
254
  if predicted_label['confidence'] > 0.01:
mathtext_fastapi/v2_conversation_manager.py ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import copy
3
+ import dill
4
+ import os
5
+ import json
6
+ import jsonpickle
7
+ import pickle
8
+ import random
9
+ import requests
10
+ import mathtext_fastapi.global_state_manager as gsm
11
+
12
+ from dotenv import load_dotenv
13
+ from mathtext_fastapi.nlu import evaluate_message_with_nlu
14
+ from mathtext_fastapi.math_quiz_fsm import MathQuizFSM
15
+ from mathtext_fastapi.math_subtraction_fsm import MathSubtractionFSM
16
+ from supabase import create_client
17
+ from transitions import Machine
18
+
19
+ from mathactive.generators import start_interactive_math
20
+ from mathactive.hints import generate_hint
21
+ from mathactive.microlessons import num_one
22
+
23
+ load_dotenv()
24
+
25
+ SUPA = create_client(
26
+ os.environ.get('SUPABASE_URL'),
27
+ os.environ.get('SUPABASE_KEY')
28
+ )
29
+
30
+
31
+ def pickle_and_encode_state_machine(state_machine):
32
+ dump = pickle.dumps(state_machine)
33
+ dump_encoded = base64.b64encode(dump).decode('utf-8')
34
+ return dump_encoded
35
+
36
+
37
+ def manage_math_quiz_fsm(user_message, contact_uuid, type):
38
+ fsm_check = SUPA.table('state_machines').select("*").eq(
39
+ "contact_uuid",
40
+ contact_uuid
41
+ ).execute()
42
+
43
+ # This doesn't allow for when one FSM is present and the other is empty
44
+ """
45
+ 1
46
+ data=[] count=None
47
+
48
+ 2
49
+ data=[{'id': 29, 'contact_uuid': 'j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09', 'addition3': None, 'subtraction': None, 'addition':
50
+
51
+ - but problem is there is no subtraction , but it's assuming there's a subtration
52
+
53
+ Cases
54
+ - make a completely new record
55
+ - update an existing record with an existing FSM
56
+ - update an existing record without an existing FSM
57
+ """
58
+ print("MATH QUIZ FSM ACTIVITY")
59
+ print("user_message")
60
+ print(user_message)
61
+ # Make a completely new entry
62
+ if fsm_check.data == []:
63
+ if type == 'addition':
64
+ math_quiz_state_machine = MathQuizFSM()
65
+ else:
66
+ math_quiz_state_machine = MathSubtractionFSM()
67
+ messages = [math_quiz_state_machine.response_text]
68
+ dump_encoded = pickle_and_encode_state_machine(math_quiz_state_machine)
69
+
70
+ SUPA.table('state_machines').insert({
71
+ 'contact_uuid': contact_uuid,
72
+ f'{type}': dump_encoded
73
+ }).execute()
74
+ # Update an existing record with a new state machine
75
+ elif not fsm_check.data[0][type]:
76
+ if type == 'addition':
77
+ math_quiz_state_machine = MathQuizFSM()
78
+ else:
79
+ math_quiz_state_machine = MathSubtractionFSM()
80
+ messages = [math_quiz_state_machine.response_text]
81
+ dump_encoded = pickle_and_encode_state_machine(math_quiz_state_machine)
82
+
83
+ SUPA.table('state_machines').update({
84
+ f'{type}': dump_encoded
85
+ }).eq(
86
+ "contact_uuid", contact_uuid
87
+ ).execute()
88
+ # Update an existing record with an existing state machine
89
+ elif fsm_check.data[0][type]:
90
+ undump_encoded = base64.b64decode(
91
+ fsm_check.data[0][type].encode('utf-8')
92
+ )
93
+ math_quiz_state_machine = pickle.loads(undump_encoded)
94
+
95
+ math_quiz_state_machine.student_answer = user_message
96
+ math_quiz_state_machine.correct_answer = str(math_quiz_state_machine.correct_answer)
97
+ messages = math_quiz_state_machine.validate_answer()
98
+ dump_encoded = pickle_and_encode_state_machine(math_quiz_state_machine)
99
+ SUPA.table('state_machines').update({
100
+ f'{type}': dump_encoded
101
+ }).eq(
102
+ "contact_uuid", contact_uuid
103
+ ).execute()
104
+ return messages
105
+
106
+
107
+ def retrieve_microlesson_content(context_data, user_message, microlesson, contact_uuid):
108
+ # TODO: This is being filtered by both the local and global states, so not changing
109
+ if microlesson == 'addition':
110
+ messages = manage_math_quiz_fsm(user_message, contact_uuid, 'addition')
111
+
112
+ if user_message == 'exit':
113
+ state_label = 'exit'
114
+ else:
115
+ state_label = 'addition-question-sequence'
116
+
117
+ input_prompt = messages.pop()
118
+ message_package = {
119
+ 'messages': messages,
120
+ 'input_prompt': input_prompt,
121
+ 'state': state_label
122
+ }
123
+ elif context_data['local_state'] == 'addition2' or microlesson == 'addition2':
124
+ if user_message == 'harder' or user_message == 'easier':
125
+ user_message = ''
126
+ message_package = num_one.process_user_message(contact_uuid, user_message)
127
+ message_package['state'] = 'addition2'
128
+ message_package['input_prompt'] = '?'
129
+
130
+ elif context_data['local_state'] == 'subtraction-question-sequence' or \
131
+ user_message == 'subtract' or \
132
+ microlesson == 'subtraction':
133
+ messages = manage_math_quiz_fsm(user_message, contact_uuid, 'subtraction')
134
+
135
+ if user_message == 'exit':
136
+ state_label = 'exit'
137
+ else:
138
+ state_label = 'subtraction-question-sequence'
139
+
140
+ input_prompt = messages.pop()
141
+
142
+ message_package = {
143
+ 'messages': messages,
144
+ 'input_prompt': input_prompt,
145
+ 'state': state_label
146
+ }
147
+ print("MICROLESSON CONTENT RESPONSE")
148
+ print(message_package)
149
+ return message_package
150
+
151
+
152
+ curriculum_lookup_table = {
153
+ 'N1.1.1_G1': 'addition',
154
+ 'N1.1.1_G2': 'addition2',
155
+ 'N1.1.2_G1': 'subtraction'
156
+ }
157
+
158
+
159
+ def lookup_local_state(next_state):
160
+ microlesson = curriculum_lookup_table[next_state]
161
+ return microlesson
162
+
163
+
164
+ def create_text_message(message_text, whatsapp_id):
165
+ """ Fills a template with input values to send a text message to Whatsapp
166
+
167
+ Inputs
168
+ - message_text: str - the content that the message should display
169
+ - whatsapp_id: str - the message recipient's phone number
170
+
171
+ Outputs
172
+ - message_data: dict - a preformatted template filled with inputs
173
+ """
174
+ message_data = {
175
+ "preview_url": False,
176
+ "recipient_type": "individual",
177
+ "to": whatsapp_id,
178
+ "type": "text",
179
+ "text": {
180
+ "body": message_text
181
+ }
182
+ }
183
+ return message_data
184
+
185
+
186
+ def manage_conversation_response(data_json):
187
+ """ Calls functions necessary to determine message and context data """
188
+ print("V2 ENDPOINT")
189
+
190
+ # whatsapp_id = data_json['author_id']
191
+ message_data = data_json['message_data']
192
+ context_data = data_json['context_data']
193
+ whatsapp_id = message_data['author_id']
194
+ user_message = message_data['message_body']
195
+ print("MESSAGE DATA")
196
+ print(message_data)
197
+ print("CONTEXT DATA")
198
+ print(context_data)
199
+ print("=================")
200
+
201
+ # nlu_response = evaluate_message_with_nlu(message_data)
202
+
203
+ # context_data = {
204
+ # 'contact_uuid': 'abcdefg',
205
+ # 'current_state': 'N1.1.1_G2',
206
+ # 'user_message': '1',
207
+ # 'local_state': ''
208
+ # }
209
+ print("STEP 1")
210
+ print(data_json)
211
+ print(f"1: {context_data['current_state']}")
212
+ if not context_data['current_state']:
213
+ context_data['current_state'] = 'N1.1.1_G1'
214
+ print(f"2: {context_data['current_state']}")
215
+
216
+ curriculum_copy = copy.deepcopy(gsm.curriculum)
217
+ curriculum_copy.state = context_data['current_state']
218
+ print("STEP 2")
219
+ if user_message == 'easier':
220
+ curriculum_copy.left()
221
+ next_state = curriculum_copy.state
222
+ elif user_message == 'harder':
223
+ curriculum_copy.right()
224
+ next_state = curriculum_copy.state
225
+ else:
226
+ next_state = context_data['current_state']
227
+ print("next_state")
228
+ print(next_state)
229
+
230
+ print("STEP 3")
231
+ microlesson = lookup_local_state(next_state)
232
+
233
+ print("microlesson")
234
+ print(microlesson)
235
+
236
+ microlesson_content = retrieve_microlesson_content(context_data, user_message, microlesson, context_data['contact_uuid'])
237
+
238
+ headers = {
239
+ 'Authorization': f"Bearer {os.environ.get('TURN_AUTHENTICATION_TOKEN')}",
240
+ 'Content-Type': 'application/json'
241
+ }
242
+
243
+ # Send all messages for the current state before a user input prompt (text/button input request)
244
+ for message in microlesson_content['messages']:
245
+ data = create_text_message(message, whatsapp_id)
246
+
247
+ # print("data")
248
+ # print(data)
249
+
250
+ r = requests.post(
251
+ f'https://whatsapp.turn.io/v1/messages',
252
+ data=json.dumps(data),
253
+ headers=headers
254
+ )
255
+
256
+ print("STEP 4")
257
+ # combine microlesson content and context_data object
258
+
259
+ updated_context = {
260
+ "context": {
261
+ "contact_id": whatsapp_id,
262
+ "contact_uuid": context_data['contact_uuid'],
263
+ "current_state": next_state,
264
+ "local_state": microlesson_content['state'],
265
+ "bot_message": microlesson_content['input_prompt'],
266
+ "user_message": user_message,
267
+ "type": 'ask'
268
+ }
269
+ }
270
+ print(updated_context)
271
+ return updated_context
pyproject.toml CHANGED
@@ -20,14 +20,17 @@ classifiers = [
20
 
21
 
22
  [tool.poetry.dependencies]
 
23
  mathtext = {git = "https://gitlab.com/tangibleai/community/mathtext", rev = "main"}
24
- fastapi = "0.74.*"
25
  pydantic = "*"
26
- python = "^3.8,<3.10"
27
- requests = "2.27.*"
28
  sentencepiece = "0.1.*"
29
  supabase = "*"
30
  uvicorn = "0.17.*"
 
 
31
 
32
  [tool.poetry.group.dev.dependencies]
33
  pytest = "^7.2"
 
20
 
21
 
22
  [tool.poetry.dependencies]
23
+ mathactive = {git = "git@gitlab.com:tangibleai/community/mathactive.git", rev = "vlad"}
24
  mathtext = {git = "https://gitlab.com/tangibleai/community/mathtext", rev = "main"}
25
+ fastapi = "^0.90.0"
26
  pydantic = "*"
27
+ python = "^3.8"
28
+ requests = "2.27.*"
29
  sentencepiece = "0.1.*"
30
  supabase = "*"
31
  uvicorn = "0.17.*"
32
+ pandas = "^1.5.3"
33
+ scipy = "^1.10.1"
34
 
35
  [tool.poetry.group.dev.dependencies]
36
  pytest = "^7.2"
requirements.txt CHANGED
@@ -3,14 +3,17 @@ en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_
3
  fuzzywuzzy
4
  jsonpickle
5
  mathtext @ git+https://gitlab.com/tangibleai/community/mathtext@main
6
- fastapi==0.74.*
7
- pydantic==1.10.*
 
 
 
 
8
  python-Levenshtein
9
- requests==2.27.*
10
- sentencepiece==0.1.*
11
  sentence-transformers
12
  sentry-sdk[fastapi]
13
  supabase
14
  transitions
15
- uvicorn==0.17.*
16
-
 
 
3
  fuzzywuzzy
4
  jsonpickle
5
  mathtext @ git+https://gitlab.com/tangibleai/community/mathtext@main
6
+ mathactive @ git+https://gitlab.com/tangibleai/community/mathactive@main
7
+ fastapi
8
+ pydantic
9
+ requests
10
+ sentencepiece
11
+ openpyxl
12
  python-Levenshtein
 
 
13
  sentence-transformers
14
  sentry-sdk[fastapi]
15
  supabase
16
  transitions
17
+ uvicorn
18
+ pandas
19
+ scipy
scripts/bump_version.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ from pathlib import Path
3
+ import re
4
+ import shutil
5
+
6
+ BASE_DIR = Path(__file__).parent.parent
7
+ PYPROJECT_PATH = BASE_DIR / 'pyproject.toml'
8
+ PATTERN = re.compile(r'(version\s*=\s*)[\'"]?(\d(\.\d+)+)[\'"]?\s*')
9
+
10
+ if __name__ == '__main__':
11
+ verline = None
12
+ with PYPROJECT_PATH.open() as fin:
13
+ lines = []
14
+ verline = None
15
+ for line in fin:
16
+ lines.append(line)
17
+ if verline:
18
+ continue
19
+ match = PATTERN.match(line)
20
+ if match:
21
+ print(f'Found match.groups(): {dict(list(enumerate(match.groups())))}')
22
+ ver = [int(x) for x in match.groups()[1].split('.')]
23
+ print(f' Old ver: {ver}')
24
+ ver[-1] += 1
25
+ print(f' New ver: {ver}')
26
+ ver = '.'.join([str(x) for x in ver])
27
+ print(f' New ver str: {ver}')
28
+ verline = f'version = "{ver}"\n'
29
+ print(f' New ver line: {verline}')
30
+ lines[-1] = verline
31
+ print(f' New ver line: {lines[-1]}')
32
+
33
+ if verline:
34
+ shutil.copy(PYPROJECT_PATH, PYPROJECT_PATH.with_suffix('.toml.bak'))
35
+ with PYPROJECT_PATH.open('w') as fout:
36
+ fout.writelines(lines)
scripts/cleanpyc.sh ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #!usr/bin/env bash
2
+ find . | grep -E "(/__pycache__$|\.pyc$|\.pyo$)" | xargs rm -rf
scripts/make_request.py CHANGED
@@ -22,7 +22,11 @@ def add_message_text_to_sample_object(message_text):
22
  message_data = '{' + f'"author_id": "+57787919091", "author_type": "OWNER", "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09", "message_body": "{message_text}", "message_direction": "inbound", "message_id": "4kl209sd0-a7b8-2hj3-8563-3hu4a89b32", "message_inserted_at": "2023-01-10T02:37:28.477940Z", "message_updated_at": "2023-01-10T02:37:28.487319Z"' + '}'
23
  # context_data = '{' + '"user":"", "state":"addition-question-sequence", "bot_message":"", "user_message":"{message_text}"' + '}'
24
 
25
- context_data = '{' + '"user":"", "state":"start-conversation", "bot_message":"", "user_message":"{message_text}"' + '}'
 
 
 
 
26
 
27
  # context_data = '{' + '"user":"", "state":"addition-question-sequence", "bot_message":"", "user_message":"{message_text}","text": "What is 2+3?","question_numbers": [4,3],"right_answer": 7,"number_correct": 2, "number_incorrect": 0, "hints_used": 0, "level": "easy"' + '}'
28
 
@@ -40,14 +44,15 @@ def add_message_text_to_sample_object(message_text):
40
  # """
41
 
42
 
43
- def run_simulated_request(endpoint, sample_answer, context=None):
44
- print(f"Case: {sample_answer}")
45
- b_string = add_message_text_to_sample_object(sample_answer)
 
46
 
47
  if endpoint == 'sentiment-analysis' or endpoint == 'text2int' or endpoint =='intent-classification':
48
  request = requests.post(
49
  url=f'http://localhost:7860/{endpoint}',
50
- json={'content': sample_answer}
51
  ).json()
52
  else:
53
  request = requests.post(
@@ -58,54 +63,98 @@ def run_simulated_request(endpoint, sample_answer, context=None):
58
  print(request)
59
 
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  # run_simulated_request('intent-classification', 'exit')
62
  # run_simulated_request('intent-classification', "I'm not sure")
 
 
 
 
 
 
 
 
 
 
 
63
  # run_simulated_request('sentiment-analysis', 'I reject it')
64
  # run_simulated_request('text2int', 'seven thousand nine hundred fifty seven')
65
- run_simulated_request('nlu', 'test message')
66
- run_simulated_request('nlu', 'eight')
67
- run_simulated_request('nlu', 'is it 8')
68
- run_simulated_request('nlu', 'can I know how its 0.5')
69
  run_simulated_request('nlu', 'eight, nine, ten')
70
  run_simulated_request('nlu', '8, 9, 10')
71
  run_simulated_request('nlu', '8')
72
  run_simulated_request('nlu', "I don't know")
73
  run_simulated_request('nlu', "I don't know eight")
74
  run_simulated_request('nlu', "I don't 9")
75
- run_simulated_request('nlu', "0.2")
76
- run_simulated_request('nlu', 'Today is a wonderful day')
77
- run_simulated_request('nlu', 'IDK 5?')
 
 
 
 
 
78
  # run_simulated_request('manager', '')
79
  # run_simulated_request('manager', 'add')
80
  # run_simulated_request('manager', 'subtract')
81
- # run_simulated_request("question", {
82
- # 'number_correct': 0,
83
- # 'number_incorrect': 0,
84
- # 'level': 'easy'
85
  # })
86
  # run_simulated_request("hint", {
87
- # 'question_numbers': [1, 2, 3],
88
- # 'right_answer': 3,
89
- # 'number_correct': 0,
90
- # 'number_incorrect': 0,
91
- # 'level': 'easy',
92
- # 'hints_used': 0
93
  # })
94
- # run_simulated_request("generate_question", {
95
- # 'level': 'medium'
 
 
 
 
 
 
96
  # })
97
- # run_simulated_request("numbers_by_level", {
98
- # 'level': 'medium'
 
 
 
99
  # })
100
- # run_simulated_request("number_sequence", {
101
- # "current_number": 10,
102
- # "ordinal_number": 2,
103
- # "times": 1
104
  # })
105
- # run_simulated_request("level", {
106
- # "current_level": "hard",
107
- # "level_up": False
 
108
  # })
 
109
  # run_simulated_request('manager', 'exit')
110
 
111
 
 
22
  message_data = '{' + f'"author_id": "+57787919091", "author_type": "OWNER", "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09", "message_body": "{message_text}", "message_direction": "inbound", "message_id": "4kl209sd0-a7b8-2hj3-8563-3hu4a89b32", "message_inserted_at": "2023-01-10T02:37:28.477940Z", "message_updated_at": "2023-01-10T02:37:28.487319Z"' + '}'
23
  # context_data = '{' + '"user":"", "state":"addition-question-sequence", "bot_message":"", "user_message":"{message_text}"' + '}'
24
 
25
+ # V1
26
+ # context_data = '{' + '"user":"", "state":"start-conversation", "bot_message":"", "user_message":"{message_text}"' + '}'
27
+
28
+ #V2
29
+ context_data = '{' + '"contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09", "current_state":"", "local_state": "", "user_message":""' + '}'
30
 
31
  # context_data = '{' + '"user":"", "state":"addition-question-sequence", "bot_message":"", "user_message":"{message_text}","text": "What is 2+3?","question_numbers": [4,3],"right_answer": 7,"number_correct": 2, "number_incorrect": 0, "hints_used": 0, "level": "easy"' + '}'
32
 
 
44
  # """
45
 
46
 
47
+ def run_simulated_request(endpoint, sample_payload, context=None):
48
+ print(f"Case: {sample_payload}")
49
+ # Used for testing full message object - deprecated April 7
50
+ b_string = add_message_text_to_sample_object(sample_payload)
51
 
52
  if endpoint == 'sentiment-analysis' or endpoint == 'text2int' or endpoint =='intent-classification':
53
  request = requests.post(
54
  url=f'http://localhost:7860/{endpoint}',
55
+ json={'content': sample_payload}
56
  ).json()
57
  else:
58
  request = requests.post(
 
63
  print(request)
64
 
65
 
66
+ def run_full_nlu_endpoint_payload_test(sample_payload):
67
+ request = requests.post(
68
+ url=f'http://localhost:7860/nlu',
69
+ data=sample_payload
70
+ ).json()
71
+ print(request)
72
+
73
+
74
+ # # Case: Wrong key
75
+ run_full_nlu_endpoint_payload_test(b'{"message": {"author_id": "@event.message._vnd.v1.chat.owner", "author_type": "@event.message._vnd.v1.author.type", "contact_uuid": "@event.message._vnd.v1.chat.contact_uuid", "message_body": "@event.message.text.body", "message_direction": "@event.message._vnd.v1.direction", "message_id": "@event.message.id", "message_inserted_at": "@event.message._vnd.v1.chat.inserted_at", "message_updated_at": "@event.message._vnd.v1.chat.updated_at"}}')
76
+
77
+ # # Case: Correct payload
78
+ run_full_nlu_endpoint_payload_test(b'{"message_data": {"author_id": "57787919091", "author_type": "OWNER", "contact_uuid": "df78gsdf78df", "message_body": "8", "message_direction": "inbound", "message_id": "dfgha789789ag9ga", "message_inserted_at": "2023-01-10T02:37:28.487319Z", "message_updated_at": "2023-01-10T02:37:28.487319Z"}}')
79
+
80
+ # # Case: Incorrect payload values
81
+ run_full_nlu_endpoint_payload_test(b'{"message_data": {"author_id": "@event.message._vnd.v1.chat.owner", "author_type": "@event.message._vnd.v1.author.type", "contact_uuid": "@event.message._vnd.v1.chat.contact_uuid", "message_body": "@event.message.text.body", "message_direction": "@event.message._vnd.v1.direction", "message_id": "@event.message.id", "message_inserted_at": "@event.message._vnd.v1.chat.inserted_at", "message_updated_at": "@event.message._vnd.v1.chat.updated_at"}}')
82
+
83
+ # Case: Wrong payload object
84
+ run_full_nlu_endpoint_payload_test(b'{"message_data": {"_vnd": {"v1": {"author": {"id": 54327547257, "name": "Jin", "type": "OWNER"}, "card_uuid": None, "chat": {"assigned_to": None, "contact_uuid": "f7889-f78dfgb798-f786ah89g7-f78f9a", "inserted_at": "2023-03-28T13:21:47.581221Z", "owner": "+43789789146", "permalink": "", "state": "OPEN", "state_reason": "Re-opened by inbound message.", "unread_count": 97, "updated_at": "2023-04-07T21:05:27.389948Z", "uuid": "dfg9a78-d76a786dghas-78d9fga789g-a78d69a9"}, "direction": "inbound", "faq_uuid": None, "in_reply_to": None, "inserted_at": "2023-04-07T21:05:27.368580Z", "labels": [], "last_status": None, "last_status_timestamp": None, "on_fallback_channel": False, "rendered_content": None, "uuid": "hf78s7s89b-789fb68d9fg-789fb789dfb-f79sfb789"}}, "from": 5475248689, "id": "SBDE4zgAAy7887sfdT35SHFS", "text": {"body": 1000}, "timestamp": 1680901527, "type": "text"}, "type": "message"}')
85
+
86
+
87
  # run_simulated_request('intent-classification', 'exit')
88
  # run_simulated_request('intent-classification', "I'm not sure")
89
+ # run_simulated_request('intent-classification', "easier")
90
+ # run_simulated_request('intent-classification', "easy")
91
+ # run_simulated_request('intent-classification', "harder")
92
+ # run_simulated_request('intent-classification', "hard")
93
+ # run_simulated_request('intent-classification', "hint")
94
+ # run_simulated_request('intent-classification', "hin")
95
+ # run_simulated_request('intent-classification', "hnt")
96
+ # run_simulated_request('intent-classification', "stop")
97
+ # run_simulated_request('intent-classification', "stp")
98
+ # run_simulated_request('intent-classification', "sop")
99
+ # run_simulated_request('intent-classification', "please stop")
100
  # run_simulated_request('sentiment-analysis', 'I reject it')
101
  # run_simulated_request('text2int', 'seven thousand nine hundred fifty seven')
102
+ # run_simulated_request('nlu', 'test message')
103
+ # run_simulated_request('nlu', 'eight')
104
+ # run_simulated_request('nlu', 'is it 8')
105
+ # run_simulated_request('nlu', 'can I know how its 0.5')
106
  run_simulated_request('nlu', 'eight, nine, ten')
107
  run_simulated_request('nlu', '8, 9, 10')
108
  run_simulated_request('nlu', '8')
109
  run_simulated_request('nlu', "I don't know")
110
  run_simulated_request('nlu', "I don't know eight")
111
  run_simulated_request('nlu', "I don't 9")
112
+ # run_simulated_request('nlu', "0.2")
113
+ # run_simulated_request('nlu', 'Today is a wonderful day')
114
+ # run_simulated_request('nlu', 'IDK 5?')
115
+ # run_simulated_request('nlu', 'hin')
116
+ # run_simulated_request('nlu', 'exi')
117
+ # run_simulated_request('nlu', 'easier')
118
+ # run_simulated_request('nlu', 'stp')
119
+ # run_simulated_request('nlu', '')
120
  # run_simulated_request('manager', '')
121
  # run_simulated_request('manager', 'add')
122
  # run_simulated_request('manager', 'subtract')
123
+
124
+ # run_simulated_request("start", {
125
+ # 'difficulty': 0.04,
126
+ # 'do_increase': True
127
  # })
128
  # run_simulated_request("hint", {
129
+ # 'start': 5,
130
+ # 'step': 1,
131
+ # 'difficulty': 0.56 # optional
 
 
 
132
  # })
133
+ # run_simulated_request("question", {
134
+ # 'start': 2,
135
+ # 'step': 1,
136
+ # 'question_num': 2 # optional
137
+ # })
138
+ # run_simulated_request("difficulty", {
139
+ # 'difficulty': 0.01,
140
+ # 'do_increase': False # True | False
141
  # })
142
+ # Need to start with this command to populate users.json
143
+ # If users.json is not already made
144
+ # run_simulated_request("num_one", {
145
+ # "user_id": "1",
146
+ # "message_text": "",
147
  # })
148
+ # run_simulated_request("num_one", {
149
+ # "user_id": "1",
150
+ # "message_text": "61",
 
151
  # })
152
+ # run_simulated_request("sequence", {
153
+ # 'start': 2,
154
+ # 'step': 1,
155
+ # 'sep': '... '
156
  # })
157
+
158
  # run_simulated_request('manager', 'exit')
159
 
160
 
scripts/pin_requirements.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Parse requirements.txt and pyproject.toml and move versions to pyproject.toml """
2
+ from pathlib import Path
3
+ import re
4
+ import sys
5
+ import toml
6
+
7
+ def get_requirement_versions(path='requirements.txt'):
8
+ """ Read requirements.txt file and return dict of package versions """
9
+ path = Path(path or '')
10
+ if path.is_dir():
11
+ path = next(iter(path.glob('**/requirements.txt')))
12
+ reqdict = {}
13
+ text = Path(path).open().read()
14
+ for line in text.splitlines():
15
+ if line.strip():
16
+ match = re.match(r'([-_a-zA-Z0-9]+)\s*([ >=<~^,.rabc0-9]+)\s*', line)
17
+ if match:
18
+ name, ver = match.groups()
19
+ reqdict[name] = ver
20
+ return reqdict
21
+
22
+
23
+ def normalize_name(name):
24
+ return str(name).strip().replace('_', '-').replace(' ', '-').lower()
25
+
26
+
27
+ def pin_versions(pyproject='pyproject.toml', reqdict=None, overwrite=False):
28
+ if not reqdict or isinstance(reqdict, (str, Path)):
29
+ reqdict = get_requirement_versions(path=reqdict)
30
+ reqdict = {
31
+ normalize_name(k): v for (k, v) in
32
+ reqdict.items()
33
+ }
34
+
35
+ pyproj = toml.load(pyproject)
36
+ depdict = pyproj.get('tool', {}).get('poetry', {}).get('dependencies', {})
37
+ depdict = {
38
+ normalize_name(k): v for (k, v) in
39
+ depdict.items()
40
+ }
41
+
42
+ for name, spec in reqdict.items():
43
+ if name in depdict:
44
+ ver = depdict[name]
45
+ if isinstance(ver, str) and (overwrite or ver == '*'):
46
+ depdict[name] = spec
47
+
48
+ pyproj['tool']['poetry']['dependencies'] = depdict
49
+ overwrite = overwrite or (input(f'Overwrite {pyproject}?')[0].lower() == 'y')
50
+ if overwrite:
51
+ with open(pyproject, 'w') as stream:
52
+ toml.dump(pyproj, stream)
53
+ return pyproj
54
+
55
+
56
+ if __name__ == '__main__':
57
+ path = 'requirements.txt'
58
+ if sys.argv[1:]:
59
+ path = sys.argv[1]
60
+ pyproj = pin_versions(reqdict=path)
61
+ print(toml.dumps(pyproj))
62
+
scripts/quiz/__init__.py ADDED
File without changes
scripts/quiz/data.csv ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ difficulty,start
2
+ 0.01,1
3
+ 0.02,0
4
+ 0.05,5
5
+ 0.07,10
6
+ 0.08,14
7
+ 0.1,20
8
+ 0.11,22
9
+ 0.13,27
10
+ 0.14,28
11
+ 0.16,30
12
+ 0.17,32
13
+ 0.18,34
14
+ 0.2,37
15
+ 0.21,39
16
+ 0.23,42
17
+ 0.25,43
18
+ 0.27,46
19
+ 0.3,50
20
+ 0.34,57
21
+ 0.35,64
22
+ 0.37,78
23
+ 0.39,89
24
+ 0.41,100
25
+ 0.44,112
26
+ 0.45,130
27
+ 0.48,147
28
+ 0.5,164
29
+ 0.52,180
30
+ 0.55,195
31
+ 0.58,209
32
+ 0.6,223
33
+ 0.61,236
34
+ 0.63,248
35
+ 0.64,259
36
+ 0.65,271
37
+ 0.67,284
38
+ 0.69,296
39
+ 0.7,308
40
+ 0.72,321
41
+ 0.73,333
42
+ 0.75,346
43
+ 0.78,359
44
+ 0.8,370
45
+ 0.81,385
46
+ 0.83,399
47
+ 0.84,408
48
+ 0.87,420
49
+ 0.88,435
50
+ 0.89,447
51
+ 0.9,458
52
+ 0.93,469
53
+ 0.94,483
54
+ 0.96,494
55
+ 0.97,500
56
+ 0.99,513
users.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"1": {"skill_score": 0.04, "state": "question", "start": 1, "stop": 1, "step": 1, "answer": 2}}