Spaces:
Runtime error
Runtime error
"""FastAPI endpoint | |
To run locally use 'uvicorn app:app --host localhost --port 7860' | |
""" | |
import re | |
from fastapi import FastAPI, Request | |
from fastapi.responses import JSONResponse | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.templating import Jinja2Templates | |
from mathtext.sentiment import sentiment | |
from mathtext.text2int import text2int | |
from pydantic import BaseModel | |
from mathtext_fastapi.nlu import prepare_message_data_for_logging | |
from mathtext_fastapi.conversation_manager import * | |
app = FastAPI() | |
app.mount("/static", StaticFiles(directory="static"), name="static") | |
templates = Jinja2Templates(directory="templates") | |
class Text(BaseModel): | |
content: str = "" | |
def home(request: Request): | |
return templates.TemplateResponse("home.html", {"request": request}) | |
def hello(content: Text = None): | |
content = {"message": f"Hello {content.content}!"} | |
return JSONResponse(content=content) | |
def sentiment_analysis_ep(content: Text = None): | |
ml_response = sentiment(content.content) | |
content = {"message": ml_response} | |
return JSONResponse(content=content) | |
def text2int_ep(content: Text = None): | |
ml_response = text2int(content.content) | |
content = {"message": ml_response} | |
return JSONResponse(content=content) | |
async def programmatic_message_manager(request: Request): | |
""" | |
Calls the conversation management function to determine what to send to the user based on the current state and user response | |
Input | |
request.body: dict - a json object of message data for the most recent user response | |
{ | |
author_id: "+47897891", | |
author_type: "OWNER", | |
message_body: "a test message", | |
message_direction: "inbound", | |
message_id: "ABJAK64jlk3-agjkl2QHFAFH", | |
message_inserted_at: "2022-07-05T04:00:34.03352Z", | |
message_updated_at: "2023-02-14T03:54:19.342950Z", | |
} | |
Output | |
context: dict - a json object that holds the information for the current state | |
{ | |
"user": "47897891", | |
"state": "welcome-message-state", | |
"bot_message": "Welcome to Rori!", | |
"user_message": "", | |
"type": "ask" | |
} | |
""" | |
data_dict = await request.json() | |
context = manage_conversational_response(data_dict) | |
return JSONResponse(context) | |
async def evaluate_user_message_with_nlu_api(request: Request): | |
""" Calls NLU APIs on the most recent user message from Turn.io message data and logs the message data | |
Input | |
- request.body: a json object of message data for the most recent user response | |
Output | |
- int_data_dict or sent_data_dict: A dictionary telling the type of NLU run and the resulting data | |
{'type':'integer', 'data': '8'} | |
{'type':'sentiment', 'data': 'negative'} | |
""" | |
data_dict = await request.json() | |
message_data = data_dict.get('message_data', '') | |
message_text = message_data['message']['text']['body'] | |
# Handles if a student answer is already an integer or a float (ie., 8) | |
if type(message_text) == int or type(message_text) == float: | |
nlu_response = {'type': 'integer', 'data': message_text, 'confidence': ''} | |
prepare_message_data_for_logging(message_data, nlu_response, message_data) | |
return JSONResponse(content=nlu_response) | |
# Removes whitespace and converts str to arr to handle multiple numbers | |
message_text_arr = re.split(", |,| ", message_text.strip()) | |
# Handle if a student answer is a string of numbers (ie., "8,9, 10") | |
if all(ele.isdigit() for ele in message_text_arr): | |
nlu_response = {'type': 'integer', 'data': ','.join(message_text_arr), 'confidence': ''} | |
prepare_message_data_for_logging(message_data, nlu_response, message_data) | |
return JSONResponse(content=nlu_response) | |
student_response_arr = [] | |
for student_response in message_text_arr: | |
# Checks the student answer and returns an integer | |
int_api_resp = text2int(student_response.lower()) | |
student_response_arr.append(int_api_resp) | |
# '32202' is text2int's error code for non-integer student answers (ie., "I don't know") | |
# If any part of the list is 32202, sentiment analysis will run | |
if 32202 in student_response_arr: | |
sentiment_api_resp = sentiment(message_text) | |
# [{'label': 'POSITIVE', 'score': 0.991188645362854}] | |
sent_data_dict = {'type': 'sentiment', 'data': sentiment_api_resp[0]['label']} | |
nlu_response = {'type': 'sentiment', 'data': sentiment_api_resp[0]['label'], 'confidence': sentiment_api_resp[0]['score']} | |
else: | |
if len(student_response_arr) > 1: | |
nlu_response = {'type': 'integer', 'data': ','.join(str(num) for num in student_response_arr), 'confidence': ''} | |
else: | |
nlu_response = {'type': 'integer', 'data': student_response_arr[0], 'confidence': ''} | |
# Uncomment to enable logging to Supabase | |
prepare_message_data_for_logging(message_data, nlu_response, message_data) | |
return JSONResponse(content=nlu_response) | |