|
import sys |
|
from pathlib import Path |
|
sys.path.append(str(Path(__file__).resolve().parent.parent)) |
|
|
|
from typing import Any |
|
|
|
from fastapi import FastAPI, Request, APIRouter, File, UploadFile |
|
from fastapi.staticfiles import StaticFiles |
|
from fastapi.templating import Jinja2Templates |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from app.config import settings |
|
from app import __version__ |
|
from app.Hackathon_setup import face_recognition, exp_recognition |
|
|
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
app = FastAPI( |
|
title=settings.PROJECT_NAME, openapi_url=f"{settings.API_V1_STR}/openapi.json" |
|
) |
|
|
|
|
|
app.mount("/static", StaticFiles(directory="app/static"), name="static") |
|
|
|
|
|
templates = Jinja2Templates(directory="app/templates") |
|
|
|
simi_filename1 = None |
|
simi_filename2 = None |
|
face_rec_filename = None |
|
expr_rec_filename = None |
|
|
|
|
|
|
|
@app.get("/") |
|
async def root(request: Request): |
|
return templates.TemplateResponse("index.html", {'request': request,}) |
|
|
|
|
|
|
|
@app.get("/similarity/") |
|
async def similarity_root(request: Request): |
|
return templates.TemplateResponse("similarity.html", {'request': request,}) |
|
|
|
|
|
@app.post("/predict_similarity/") |
|
async def create_upload_files(request: Request, file1: UploadFile = File(...), file2: UploadFile = File(...)): |
|
global simi_filename1 |
|
global simi_filename2 |
|
|
|
if 'image' in file1.content_type: |
|
contents = await file1.read() |
|
simi_filename1 = 'app/static/' + file1.filename |
|
with open(simi_filename1, 'wb') as f: |
|
f.write(contents) |
|
|
|
if 'image' in file2.content_type: |
|
contents = await file2.read() |
|
simi_filename2 = 'app/static/' + file2.filename |
|
with open(simi_filename2, 'wb') as f: |
|
f.write(contents) |
|
|
|
img1 = Image.open(simi_filename1) |
|
img1 = np.array(img1).reshape(img1.size[1], img1.size[0], 3).astype(np.uint8) |
|
|
|
img2 = Image.open(simi_filename2) |
|
img2 = np.array(img2).reshape(img2.size[1], img2.size[0], 3).astype(np.uint8) |
|
|
|
result = face_recognition.get_similarity(img1, img2) |
|
|
|
|
|
return templates.TemplateResponse("predict_similarity.html", {"request": request, |
|
"result": np.round(result, 3), |
|
"simi_filename1": '../static/'+file1.filename, |
|
"simi_filename2": '../static/'+file2.filename,}) |
|
|
|
|
|
|
|
@app.get("/face_recognition/") |
|
async def face_recognition_root(request: Request): |
|
return templates.TemplateResponse("face_recognition.html", {'request': request,}) |
|
|
|
|
|
@app.post("/predict_face_recognition/") |
|
async def create_upload_files(request: Request, file3: UploadFile = File(...)): |
|
global face_rec_filename |
|
|
|
if 'image' in file3.content_type: |
|
contents = await file3.read() |
|
face_rec_filename = 'app/static/' + file3.filename |
|
with open(face_rec_filename, 'wb') as f: |
|
f.write(contents) |
|
|
|
img1 = Image.open(face_rec_filename) |
|
img1 = np.array(img1).reshape(img1.size[1], img1.size[0], 3).astype(np.uint8) |
|
|
|
result = face_recognition.get_face_class(img1) |
|
print(result) |
|
|
|
return templates.TemplateResponse("predict_face_recognition.html", {"request": request, |
|
"result": result, |
|
"face_rec_filename": '../static/'+file3.filename,}) |
|
|
|
|
|
|
|
@app.get("/expr_recognition/") |
|
async def expr_recognition_root(request: Request): |
|
return templates.TemplateResponse("expr_recognition.html", {'request': request,}) |
|
|
|
|
|
@app.post("/predict_expr_recognition/") |
|
async def create_upload_files(request: Request, file4: UploadFile = File(...)): |
|
global expr_rec_filename |
|
|
|
if 'image' in file4.content_type: |
|
contents = await file4.read() |
|
expr_rec_filename = 'app/static/' + file4.filename |
|
with open(expr_rec_filename, 'wb') as f: |
|
f.write(contents) |
|
|
|
img1 = Image.open(expr_rec_filename) |
|
img1 = np.array(img1).reshape(img1.size[1], img1.size[0], 3).astype(np.uint8) |
|
|
|
result = exp_recognition.get_expression(img1) |
|
print(result) |
|
|
|
return templates.TemplateResponse("predict_expr_recognition.html", {"request": request, |
|
"result": result, |
|
"expr_rec_filename": '../static/'+file4.filename,}) |
|
|
|
|
|
|
|
|
|
if settings.BACKEND_CORS_ORIGINS: |
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=[str(origin) for origin in settings.BACKEND_CORS_ORIGINS], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=8001) |
|
|