Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st #Web App
|
2 |
+
from PIL import Image, ImageOps #Image Processing
|
3 |
+
import time
|
4 |
+
from unittest import result
|
5 |
+
from pythainlp.util import isthai
|
6 |
+
import numpy as np
|
7 |
+
import easyocr as ocr #OCR
|
8 |
+
import editdistance
|
9 |
+
from fastbook import *
|
10 |
+
from fastai.vision import *
|
11 |
+
from glob import glob
|
12 |
+
from pathlib import Path
|
13 |
+
from sklearn.metrics import precision_recall_fscore_support, accuracy_score, roc_auc_score
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
st.sidebar.image("./logo.png")
|
19 |
+
|
20 |
+
st.sidebar.header("ATK-OCR classification (AOC) Webapp.")
|
21 |
+
|
22 |
+
|
23 |
+
activities = ["Detection", "About"]
|
24 |
+
choice = st.sidebar.selectbox("Select option..",activities)
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
#set default size as 1280 x 1280
|
31 |
+
def img_resize(input_path,img_size): # padding
|
32 |
+
desired_size = img_size
|
33 |
+
im = Image.open(input_path)
|
34 |
+
im = ImageOps.exif_transpose(im) # fix image rotating
|
35 |
+
width, height = im.size # get img_input size
|
36 |
+
if (width == 1280) and (height == 1280):
|
37 |
+
new_im = im
|
38 |
+
else:
|
39 |
+
#im = im.convert('L') #Convert to gray
|
40 |
+
old_size = im.size # old_size[0] is in (width, height) format
|
41 |
+
ratio = float(desired_size)/max(old_size)
|
42 |
+
new_size = tuple([int(x*ratio) for x in old_size])
|
43 |
+
im = im.resize(new_size, Image.ANTIALIAS)
|
44 |
+
new_im = Image.new("RGB", (desired_size, desired_size))
|
45 |
+
new_im.paste(im, ((desired_size-new_size[0])//2,
|
46 |
+
(desired_size-new_size[1])//2))
|
47 |
+
|
48 |
+
return new_im
|
49 |
+
|
50 |
+
|
51 |
+
checkpoint_path = "./ATK Efficientb_7 FastAI(96%).pkl"
|
52 |
+
|
53 |
+
learn_inf = load_learner(checkpoint_path)
|
54 |
+
model = learn_inf.model.eval()
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
def get_detection(img_path):
|
60 |
+
bytes_data = img_path.getvalue() # change fileuploader type to bytes (st.file_uploader)
|
61 |
+
pred = learn_inf.predict(bytes_data)
|
62 |
+
detect_val = ""
|
63 |
+
if pred[0] == "1_Positive":
|
64 |
+
detect_val = "Positive"
|
65 |
+
st.error("Result : {} with {}% confidence".format(detect_val, round(float(pred[2][1]*100),2)))
|
66 |
+
if pred[0] == "0_Negative":
|
67 |
+
detect_val = "Negative"
|
68 |
+
st.success("Result : {} with {}% confidence".format(detect_val, round(float(pred[2][0]*100),2)))
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
@st.cache
|
73 |
+
def load_model():
|
74 |
+
reader = ocr.Reader(['en'],model_storage_directory='.')
|
75 |
+
return reader
|
76 |
+
|
77 |
+
reader = load_model() #load model
|
78 |
+
|
79 |
+
def Get_Idcard_detail(file_path):
|
80 |
+
raw_data = []
|
81 |
+
id_num = {"id_num" : "None"}
|
82 |
+
name = file_path
|
83 |
+
img = Image.open(name)
|
84 |
+
img = ImageOps.exif_transpose(img) # fix image rotating
|
85 |
+
|
86 |
+
width, height = img.size # get img_input size
|
87 |
+
if (width == 1280) and (height == 1280):
|
88 |
+
result = reader.readtext(np.array(img))
|
89 |
+
else:
|
90 |
+
#im = im.convert('L') #Convert to gray
|
91 |
+
old_size = img.size # old_size[0] is in (width, height) format
|
92 |
+
ratio = float(1280)/max(old_size)
|
93 |
+
new_size = tuple([int(x*ratio) for x in old_size])
|
94 |
+
img = img.resize(new_size, Image.ANTIALIAS)
|
95 |
+
new_im = Image.new("RGB", (1280, 1280))
|
96 |
+
new_im.paste(img, ((1280-new_size[0])//2,
|
97 |
+
(1280-new_size[1])//2))
|
98 |
+
|
99 |
+
result = reader.readtext(np.array(new_im))
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
result_text = [] #empty list for results
|
105 |
+
for text in result:
|
106 |
+
result_text.append(text[1])
|
107 |
+
|
108 |
+
|
109 |
+
raw_data = result_text
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
def get_english(raw_list): # Cut only english var
|
114 |
+
eng_name = []
|
115 |
+
thai_name = []
|
116 |
+
|
117 |
+
for name in raw_list:
|
118 |
+
if isthai(name) == True:
|
119 |
+
thai_name.append(name)
|
120 |
+
else:
|
121 |
+
eng_name.append(name)
|
122 |
+
|
123 |
+
return eng_name
|
124 |
+
|
125 |
+
raw_data = get_english(raw_data)
|
126 |
+
|
127 |
+
|
128 |
+
def Clear_syntax(raw_list):
|
129 |
+
|
130 |
+
Clean_syntax = ["","#","{","}","=","/","@","#","$","—","|","%","-","(",")","¥", "[", "]", "‘",':',';']
|
131 |
+
|
132 |
+
for k in range(len(Clean_syntax)):
|
133 |
+
while (Clean_syntax[k] in raw_list): # remove single symbol
|
134 |
+
raw_list.remove(Clean_syntax[k])
|
135 |
+
|
136 |
+
for l in range(len(raw_list)):
|
137 |
+
raw_list[l] = raw_list[l].replace("!","l") #split ! --> l (Error OCR Check)
|
138 |
+
raw_list[l] = raw_list[l].replace(",",".") #split ! --> l (Error OCR Check)
|
139 |
+
raw_list[l] = raw_list[l].replace(" ","") #split " " out from str
|
140 |
+
raw_list[l] = raw_list[l].lower() #Set all string to lowercase
|
141 |
+
|
142 |
+
for m in range(len(raw_list)): #Clear symbol in str "Hi/'" --> "Hi"
|
143 |
+
for n in range(len(Clean_syntax)):
|
144 |
+
raw_list[m] = raw_list[m].replace(Clean_syntax[n],"")
|
145 |
+
return raw_list
|
146 |
+
|
147 |
+
raw_data = Clear_syntax(raw_data)
|
148 |
+
|
149 |
+
|
150 |
+
def get_idnum(raw_list):
|
151 |
+
id_num = {"id_num" : "None"}
|
152 |
+
# 1. normal check
|
153 |
+
for i in range(len(raw_list)): # check if len(list) = 1, 4, 5, 2, 1 (13 digit idcard) and all is int
|
154 |
+
try:
|
155 |
+
if ((len(raw_list[i]) == 1) and (len(raw_list[i+1]) == 4) and (len(raw_list[i+2]) == 5) and (len(raw_list[i+3]) == 2) and (len(raw_list[i+4]) == 1)) and ((raw_list[i] + raw_list[i+1] + raw_list[i+2] + raw_list[i+3] + raw_list[i+4]).isnumeric()):
|
156 |
+
id_num["id_num"] = (raw_list[i] + raw_list[i+1] + raw_list[i+2] + raw_list[i+3] + raw_list[i+4])
|
157 |
+
break
|
158 |
+
except:
|
159 |
+
pass
|
160 |
+
|
161 |
+
# 2. Hardcore Check
|
162 |
+
if id_num["id_num"] == "None":
|
163 |
+
id_count = 0
|
164 |
+
index_first = 0
|
165 |
+
index_end = 0
|
166 |
+
for i in range(len(raw_list)):
|
167 |
+
if id_count == 13:
|
168 |
+
index_end = i-1 #ลบ 1 index เพราะ ครบ 13 รอบก่อนหน้านี้
|
169 |
+
#print(f"index_first == {index_first} index_end == {index_end}")
|
170 |
+
#print(f"id = {raw_list[index_first:index_end+1]}")
|
171 |
+
id_num["id_num"] = ''.join(raw_list[index_first:index_end+1])
|
172 |
+
break
|
173 |
+
else:
|
174 |
+
if raw_list[i].isnumeric() == True and index_first == 0:
|
175 |
+
id_count += len(raw_list[i])
|
176 |
+
index_first = i
|
177 |
+
elif raw_list[i].isnumeric() == True and index_first != 0:
|
178 |
+
id_count += len(raw_list[i])
|
179 |
+
elif raw_list[i].isnumeric() == False:
|
180 |
+
id_count = 0
|
181 |
+
index_first = 0
|
182 |
+
|
183 |
+
return id_num
|
184 |
+
|
185 |
+
id_num = (get_idnum(raw_data))
|
186 |
+
|
187 |
+
#Complete list name check
|
188 |
+
def list_name_check(raw_list):
|
189 |
+
sum_list = raw_list
|
190 |
+
name_key = ['name', 'lastname']
|
191 |
+
|
192 |
+
#1. name_key check
|
193 |
+
if ("name" in sum_list) and ("lastname" in sum_list): # if name and lastname in list pass it!
|
194 |
+
pass
|
195 |
+
else:
|
196 |
+
for i in range(len(name_key)):
|
197 |
+
for j in range(len(sum_list)):
|
198 |
+
if (editdistance.eval(name_key[i], sum_list[j]) <= 2 ):
|
199 |
+
sum_list[j] = name_key[i]
|
200 |
+
|
201 |
+
gender_key = ["mr.", "mrs.", 'master', 'miss']
|
202 |
+
#2 gender_key check
|
203 |
+
count = 0 # check for break
|
204 |
+
for i in range(len(gender_key)):
|
205 |
+
for j in range(len(sum_list)):
|
206 |
+
if (count == 0):
|
207 |
+
try:
|
208 |
+
if (sum_list[i] == "name") or (sum_list[i] == "lastname"): # skip "name" and "lastname"
|
209 |
+
pass
|
210 |
+
else:
|
211 |
+
# mr, mrs sensitive case double check with len(gender_key) == len(keyword)
|
212 |
+
if (gender_key[i] == "mr." or gender_key[i] == "mrs.") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 and (len(gender_key[i]) == len(sum_list[j]))):
|
213 |
+
sum_list[j] = gender_key[i]
|
214 |
+
count+=1
|
215 |
+
#print(1)
|
216 |
+
elif (gender_key[i] == "master" or gender_key[i] == "miss") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 ) and (len(gender_key[i]) == len(sum_list[j])):
|
217 |
+
sum_list[j] = gender_key[i]
|
218 |
+
count+=1
|
219 |
+
#print(1)
|
220 |
+
except:
|
221 |
+
if (gender_key[i] == "mr." or gender_key[i] == "mrs.") and (editdistance.eval(gender_key[i], sum_list[j]) <= 2 and (len(gender_key[i]) == len(sum_list[j]))):
|
222 |
+
sum_list[j] = gender_key[i]
|
223 |
+
count+=1
|
224 |
+
#print(1)
|
225 |
+
elif (gender_key[i] == "master" or gender_key[i] == "miss") and (editdistance.eval(gender_key[i], sum_list[j]) <= 3 ) and (len(gender_key[i]) == len(sum_list[j])):
|
226 |
+
sum_list[j] = gender_key[i]
|
227 |
+
count+=1
|
228 |
+
#print(1)
|
229 |
+
else:
|
230 |
+
break
|
231 |
+
|
232 |
+
return sum_list
|
233 |
+
|
234 |
+
raw_data = list_name_check(raw_data)
|
235 |
+
|
236 |
+
#get_eng_name
|
237 |
+
def get_engname(raw_list):
|
238 |
+
get_data = raw_list
|
239 |
+
engname_list = []
|
240 |
+
|
241 |
+
name_pos = []
|
242 |
+
lastname_pos = []
|
243 |
+
mr_pos = []
|
244 |
+
mrs_pos = []
|
245 |
+
|
246 |
+
# check keyword by name, lastname, master, mr, miss, mrs
|
247 |
+
for j in range(len(get_data)): #get "name" , "lastname" index
|
248 |
+
if "name" == get_data[j]:
|
249 |
+
name_pos.append(j)
|
250 |
+
elif "lastname" == get_data[j]:
|
251 |
+
lastname_pos.append(j)
|
252 |
+
elif ("mr." == get_data[j]) or ("master" == get_data[j]):
|
253 |
+
mr_pos.append(j)
|
254 |
+
elif ("miss" == get_data[j]) or ("mrs." == get_data[j]):
|
255 |
+
mrs_pos.append(j)
|
256 |
+
|
257 |
+
|
258 |
+
if len(name_pos) != 0: #get_engname ex --> ['name', 'master', 'tanaanan', 'lastname', 'chalermpan']
|
259 |
+
engname_list = get_data[name_pos[0]:name_pos[0]+6] # select first index กรณีมี "name" มากกว่า 1 ตัว
|
260 |
+
elif len(lastname_pos) != 0:
|
261 |
+
engname_list = get_data[lastname_pos[0]-3:lastname_pos[0]+3]
|
262 |
+
elif len(mr_pos) != 0:
|
263 |
+
engname_list = get_data[mr_pos[0]-1:mr_pos[0]+5]
|
264 |
+
elif len(mrs_pos) != 0:
|
265 |
+
engname_list = get_data[mrs_pos[0]-1:mrs_pos[0]+5]
|
266 |
+
else:
|
267 |
+
print("Can't find eng name!!")
|
268 |
+
|
269 |
+
return engname_list
|
270 |
+
|
271 |
+
raw_data = get_engname(raw_data)
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
def split_genkey(raw_list): # remove stringname + gender_key ex. "missjate" -> "jate"
|
277 |
+
data = raw_list
|
278 |
+
key = ['mrs.','mr.','master','miss']
|
279 |
+
name = "" #gen_key name
|
280 |
+
name_pos = 0
|
281 |
+
gen_index = 0
|
282 |
+
gen_type = "" #male / female
|
283 |
+
# check keyword
|
284 |
+
for key_val in key:
|
285 |
+
for each_text in data:
|
286 |
+
if (each_text[:len(key_val)] == key_val) or (editdistance.eval(each_text[:len(key_val)],key_val) <= 1 and (len(each_text[:len(key_val)]) == len(key_val))):
|
287 |
+
#each_text = each_text[len(key):]
|
288 |
+
if (each_text == "name") or (each_text == "lastname"):
|
289 |
+
pass
|
290 |
+
else:
|
291 |
+
name = (each_text[:len(key_val)])
|
292 |
+
name_pos = data.index(each_text) # get_index
|
293 |
+
gen_index = len(key_val)
|
294 |
+
break
|
295 |
+
if (name_pos != 0):
|
296 |
+
data[name_pos] = data[name_pos][gen_index:] # split gender_key on list
|
297 |
+
for empty_str in range(data.count('')): # clear "empty string"
|
298 |
+
data.remove('')
|
299 |
+
return data
|
300 |
+
|
301 |
+
raw_data = split_genkey(raw_data)
|
302 |
+
|
303 |
+
|
304 |
+
def clean_name_data(raw_list): # delete all single string and int string
|
305 |
+
for k in range(len(raw_list)):
|
306 |
+
try:
|
307 |
+
while ((len(raw_list[k]) <= 2) or (raw_list[k].isnumeric() == True)): # remove single symbol
|
308 |
+
raw_list.remove(raw_list[k])
|
309 |
+
except IndexError:
|
310 |
+
pass
|
311 |
+
return raw_list
|
312 |
+
|
313 |
+
raw_data = clean_name_data(raw_data)
|
314 |
+
|
315 |
+
|
316 |
+
def name_sum(raw_list):
|
317 |
+
info = {"name" : "None",
|
318 |
+
"lastname" : "None"}
|
319 |
+
key = ['mr.','mrs.', 'master', 'miss', 'mrs','mr']
|
320 |
+
name_pos = 0
|
321 |
+
lastname_pos = 0
|
322 |
+
for key_val in key: # remove gender_key in string
|
323 |
+
if key_val in raw_list:
|
324 |
+
raw_list.remove(key_val)
|
325 |
+
try:
|
326 |
+
for i in range(len(raw_list)):
|
327 |
+
if raw_list[i] == "name":
|
328 |
+
info["name"] = raw_list[i+1]
|
329 |
+
name_pos = i+1
|
330 |
+
elif raw_list[i] == "lastname":
|
331 |
+
info["lastname"] = raw_list[i+1]
|
332 |
+
lastname_pos = i+1
|
333 |
+
except:
|
334 |
+
pass
|
335 |
+
|
336 |
+
# กรณี หาอย่างใดอย่าหนึ่งเจอให้ลองข้ามไปดู 1 index name, "name_val", lastname , "lastname_val"
|
337 |
+
if (info["name"] != "None") and (info["lastname"] == "None"):
|
338 |
+
try:
|
339 |
+
info["lastname"] = raw_list[name_pos+2]
|
340 |
+
except:
|
341 |
+
pass
|
342 |
+
elif (info["lastname"] != "None") and (info["name"] == "None"):
|
343 |
+
try:
|
344 |
+
info["name"] = raw_list[lastname_pos-2]
|
345 |
+
except:
|
346 |
+
pass
|
347 |
+
|
348 |
+
# remove . on "mr." and "mrs."
|
349 |
+
info["name"] = info["name"].replace(".","")
|
350 |
+
info["lastname"] = info["lastname"].replace(".","")
|
351 |
+
|
352 |
+
|
353 |
+
return info
|
354 |
+
|
355 |
+
st.subheader("Process Completed!.....")
|
356 |
+
st.write(id_num)
|
357 |
+
st.write(name_sum(raw_data))
|
358 |
+
|
359 |
+
|
360 |
+
|
361 |
+
|
362 |
+
|
363 |
+
|
364 |
+
if choice == "Detection":
|
365 |
+
|
366 |
+
st.title("ATK-OCR classification (AOC) Webapp.")
|
367 |
+
|
368 |
+
#subtitle
|
369 |
+
st.subheader(" Antigen test kit + Identification Card detector.")
|
370 |
+
|
371 |
+
pages_name = ['ATK + Idcard Detect', 'ATK Detect', 'Idcard Detect']
|
372 |
+
page = st.radio('Select option mode :', pages_name)
|
373 |
+
|
374 |
+
#image uploader
|
375 |
+
image = st.file_uploader(label = "upload ATK + Idcard img here.. OwO",type=['png','jpg','jpeg'])
|
376 |
+
|
377 |
+
if image is not None:
|
378 |
+
new_img = img_resize(image, 1280)
|
379 |
+
|
380 |
+
if page == "ATK + Idcard Detect":
|
381 |
+
st.image(new_img)
|
382 |
+
with st.spinner("🤖 ATK + Idcard Working... "):
|
383 |
+
|
384 |
+
t1 = time.perf_counter()
|
385 |
+
Get_Idcard_detail(image)
|
386 |
+
get_detection(image)
|
387 |
+
t2 = time.perf_counter()
|
388 |
+
st.write('time taken to run: {:.2f} sec'.format(t2-t1))
|
389 |
+
|
390 |
+
elif page == "ATK Detect":
|
391 |
+
st.image(new_img)
|
392 |
+
with st.spinner("🤖 ATK Working... "):
|
393 |
+
t1 = time.perf_counter()
|
394 |
+
get_detection(image)
|
395 |
+
t2 = time.perf_counter()
|
396 |
+
st.write('time taken to run: {:.2f} sec'.format(t2-t1))
|
397 |
+
|
398 |
+
elif page == "Idcard Detect":
|
399 |
+
st.image(new_img)
|
400 |
+
with st.spinner("🤖 Idcard Working... "):
|
401 |
+
t1 = time.perf_counter()
|
402 |
+
Get_Idcard_detail(image)
|
403 |
+
t2 = time.perf_counter()
|
404 |
+
st.write('time taken to run: {:.2f} sec'.format(t2-t1))
|
405 |
+
else:
|
406 |
+
st.write("## Waiting for image..")
|
407 |
+
st.image('atk_idcard.jpeg')
|
408 |
+
|
409 |
+
elif choice =='About' :
|
410 |
+
st.header("About...")
|
411 |
+
st.subheader("AOC คืออะไร ?")
|
412 |
+
st.write("- เป็นระบบที่สามารถคัดกรองผลตรวจเชื้อของ COVID-19 ได้ผ่าน ที่ตรวจ ATK (Antigen Test Kit) ควบคู่กับบัตรประชาชน จากรูปภาพได้โดยอัตโนมัติ")
|
413 |
+
|
414 |
+
st.subheader("AOC ทำอะไรได้บ้าง ?")
|
415 |
+
st.write("- ตรวจจับผลตรวจ ATK (Obj detection) [debugging in progress]")
|
416 |
+
st.write("- ตรวจจับชื่อ-นามสกุล (OCR)")
|
417 |
+
st.write("- ตรวจจับเลขบัตรประชาชน (OCR)")
|
418 |
+
|
419 |
+
st.subheader("AOC ดีกว่ายังไง ?")
|
420 |
+
st.write("จากผลที่ได้จากการเปรียบเทียบกันระหว่าง model (AOC) กับ คน (Baseline) จำนวน 30 ภาพ / คน ได้ผลดังนี้")
|
421 |
+
st.image("./acc_table.png")
|
422 |
+
st.write("จากผลที่ได้สรุปได้ว่า ส่วนที่ผ่าน Baseline และมีประสิทธิภาพดีกว่าคัดกรองด้วยคนคือ ผลตรวจ ATK ได้ผลที่ 100 %, เลขบัตรประชน ได้ผลที่ 100 % และ ความเร็วในการคัดกรอง ได้ผลที่ 4.84 วินาที ซึ่งมีความเร็วมากกว่า 81% เมื่อเทียบกับค���ดกรองด้วยคน ถือว่ามีประสิทธิภาพที่สูงมากในการคัดกรอง และ มีประสิทธิภาพมากกว่าการคัดแยกด้วยมนุษย์")
|
423 |
+
st.write("** ความเร็วที่โมเดลทำได้อาจไม่ตรงตามที่ deploy บนเว็บ เนื่องจากในเว็บ ไม่มี GPU ในการประมวลผลอาจทำให้โมเดลใช้เวลาในการประมวลที่นานกว่าตอนใช้ GPU")
|
424 |
+
|
425 |
+
|
426 |
+
st.subheader("คำแนะนำในการใช้งาน")
|
427 |
+
st.write("- ในการใช้งานให้ถ่ายรูปภาพบัตรประชาชนในแนวตั้งเท่านั้น เนื่องจากถ้าเป็นแนวอื่นอาจทำให้การตรวจจับคลาดเคลื่อนเอาได้")#3
|
428 |
+
st.write("- ภาพไม่ควรมีแสงที่สว่างมากเกืนไป และ มืดเกินไป มิฉะนั้นอาจทำให้การตรวจจับคลาดเคลื่อนเอาได้")#4
|
429 |
+
st.write("- ภาพไม่ควรที่จะอยู่ไกลเกินไป และ ควรมีความชัด มิฉะนั้นอาจทำให้การตรวจจับคลาดเคลื่อน หรือ ไม่สามารถตรวจจับได้")#5
|
430 |
+
|
431 |
+
st.subheader("รายละเอียดเพิ่มเติม")
|
432 |
+
st.write('[Medium blog](https://medium.com/@mjsalyjoh/atk-ocr-classification-aoc-%E0%B8%A3%E0%B8%B0%E0%B8%9A%E0%B8%9A%E0%B8%84%E0%B8%B1%E0%B8%94%E0%B8%81%E0%B8%A3%E0%B8%AD%E0%B8%87%E0%B8%9C%E0%B8%A5%E0%B8%95%E0%B8%A3%E0%B8%A7%E0%B8%88-atk-%E0%B9%81%E0%B8%A5%E0%B8%B0-%E0%B8%9A%E0%B8%B1%E0%B8%95%E0%B8%A3%E0%B8%9B%E0%B8%A3%E0%B8%B0%E0%B8%8A%E0%B8%B2%E0%B8%8A%E0%B8%99-fa32a8d47599)')
|
433 |
+
st.write('[Github Link](https://github.com/Tanaanan/AOC_ATK_OCR_Classification)')
|
434 |
+
|
435 |
+
st.warning("** ระบบ ATK ตอนนี้ใช้เป็น Image classification อยู่เนื่องจาก Object detection ยังมีปัญหาในการ deploy on cloud.. (กำลังอยู่ในขั้นตอน debug!)")
|
436 |
+
|
437 |
+
|
438 |
+
st.sidebar.subheader('More image for test..')
|
439 |
+
st.sidebar.write('[Github img test set.](https://github.com/Tanaanan/AOC_ATK_OCR_Classification/tree/main/test_set(img))')
|
440 |
+
|
441 |
+
st.sidebar.markdown('---')
|
442 |
+
st.sidebar.subheader('Recomend / Issues report..')
|
443 |
+
st.sidebar.write('[Google form](https://forms.gle/zYpYFKcTpBoFGxN58)')
|
444 |
+
|
445 |
+
|
446 |
+
st.sidebar.markdown('---')
|
447 |
+
st.sidebar.subheader('Made by Tanaanan .M')
|
448 |
+
st.sidebar.write("Contact : mjsalyjoh@gmail.com")
|