Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
alexfremont
commited on
Commit
·
684956c
1
Parent(s):
c763267
add new route
Browse files- Dockerfile +1 -1
- main.py +48 -0
- requirements.txt +2 -1
Dockerfile
CHANGED
@@ -30,4 +30,4 @@ EXPOSE 7860
|
|
30 |
# git clone $(cat /run/secrets/api_read)
|
31 |
|
32 |
# Commande pour lancer l'application
|
33 |
-
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"
|
|
|
30 |
# git clone $(cat /run/secrets/api_read)
|
31 |
|
32 |
# Commande pour lancer l'application
|
33 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
CHANGED
@@ -12,6 +12,9 @@ from huggingface_hub import hf_hub_download
|
|
12 |
from architecture.resnet import ResNet
|
13 |
import torch
|
14 |
import logging
|
|
|
|
|
|
|
15 |
|
16 |
app = FastAPI()
|
17 |
|
@@ -116,3 +119,48 @@ async def predict(request: PredictRequest):
|
|
116 |
logging.info("confidence: %s", confidence)
|
117 |
# Return the probabilities as JSON
|
118 |
return JSONResponse(content={"confidence": confidence})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from architecture.resnet import ResNet
|
13 |
import torch
|
14 |
import logging
|
15 |
+
from typing import List
|
16 |
+
import httpx
|
17 |
+
|
18 |
|
19 |
app = FastAPI()
|
20 |
|
|
|
119 |
logging.info("confidence: %s", confidence)
|
120 |
# Return the probabilities as JSON
|
121 |
return JSONResponse(content={"confidence": confidence})
|
122 |
+
|
123 |
+
|
124 |
+
class BatchPredictRequest(BaseModel):
|
125 |
+
imageUrls: List[str]
|
126 |
+
modelName: str
|
127 |
+
|
128 |
+
|
129 |
+
@app.post("/batch_predict")
|
130 |
+
async def batch_predict(request: BatchPredictRequest):
|
131 |
+
model_name = request.modelName
|
132 |
+
results = []
|
133 |
+
|
134 |
+
# Verify if the model is loaded
|
135 |
+
if model_name not in model_pipelines:
|
136 |
+
raise HTTPException(status_code=404, detail="Model not found")
|
137 |
+
|
138 |
+
model = model_pipelines[model_name]
|
139 |
+
|
140 |
+
# Asynchronously process each image
|
141 |
+
async with httpx.AsyncClient() as client:
|
142 |
+
for image_url in request.imageUrls:
|
143 |
+
try:
|
144 |
+
response = await client.get(image_url)
|
145 |
+
image = Image.open(BytesIO(response.content))
|
146 |
+
except Exception as e:
|
147 |
+
results.append({"imageUrl": image_url, "error": "Invalid image URL"})
|
148 |
+
continue
|
149 |
+
|
150 |
+
# Preprocess the image
|
151 |
+
processed_image = process_image(image, size=image_size)
|
152 |
+
|
153 |
+
# Convert to tensor
|
154 |
+
image_tensor = transforms.ToTensor()(processed_image).unsqueeze(0)
|
155 |
+
|
156 |
+
# Perform inference
|
157 |
+
with torch.no_grad():
|
158 |
+
outputs = model(image_tensor)
|
159 |
+
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
160 |
+
predicted_probabilities = probabilities.numpy().tolist()
|
161 |
+
confidence = round(predicted_probabilities[0][1], 2)
|
162 |
+
|
163 |
+
results.append({"imageUrl": image_url, "confidence": confidence})
|
164 |
+
|
165 |
+
# Return the results as JSON
|
166 |
+
return JSONResponse(content={"results": results})
|
requirements.txt
CHANGED
@@ -6,4 +6,5 @@ requests
|
|
6 |
torchvision
|
7 |
huggingface_hub
|
8 |
torch
|
9 |
-
numpy
|
|
|
|
6 |
torchvision
|
7 |
huggingface_hub
|
8 |
torch
|
9 |
+
numpy
|
10 |
+
httpx
|