funasr-svsmall / app.py
TaiYouWeb's picture
Update app.py
a82fccb verified
raw
history blame
2.74 kB
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
from modelscope import snapshot_download
import datetime
import math
import io
import os
import tempfile
import json
from typing import Optional
import torch
import gradio as gr
from config import model_config
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_dir = snapshot_download(model_config['model_dir'])
model = AutoModel(
model=model_dir,
trust_remote_code=False,
remote_code="./model.py",
vad_model="fsmn-vad",
punc_model="ct-punc",
spk_model="cam++",
vad_kwargs={"max_single_segment_time": 15000},
ncpu=torch.get_num_threads(),
batch_size=1,
hub="hf",
device=device,
)
def transcribe_audio(file_path, vad_model="fsmn-vad", punc_model="ct-punc", spk_model="cam++", vad_kwargs='{"max_single_segment_time": 15000}',
batch_size=1, language="auto", use_itn=True, batch_size_s=60,
merge_vad=True, merge_length_s=15, batch_size_threshold_s=50,
hotword=" ", ban_emo_unk=True):
try:
vad_kwargs = json.loads(vad_kwargs)
temp_file_path = file_path
res = model.generate(
input=temp_file_path,
cache={},
language=language,
use_itn=use_itn,
batch_size_s=batch_size_s,
merge_vad=merge_vad,
merge_length_s=merge_length_s,
batch_size_threshold_s=batch_size_threshold_s,
hotword=hotword,
ban_emo_unk=ban_emo_unk
)
text = rich_transcription_postprocess(res[0]["text"])
return text
except Exception as e:
return str(e)
inputs = [
gr.Audio(type="filepath"),
gr.Textbox(value="fsmn-vad", label="VAD Model"),
gr.Textbox(value="ct-punc", label="PUNC Model"),
gr.Textbox(value="cam++", label="SPK Model"),
gr.Textbox(value='{"max_single_segment_time": 15000}', label="VAD Kwargs"),
gr.Slider(1, 10, value=1, step=1, label="Batch Size"),
gr.Textbox(value="auto", label="Language"),
gr.Checkbox(value=True, label="Use ITN"),
gr.Slider(30, 120, value=60, step=1, label="Batch Size (seconds)"),
gr.Checkbox(value=True, label="Merge VAD"),
gr.Slider(5, 60, value=15, step=1, label="Merge Length (seconds)"),
gr.Slider(10, 100, value=50, step=1, label="Batch Size Threshold (seconds)"),
gr.Textbox(value=" ", label="Hotword"),
gr.Checkbox(value=True, label="Ban Emotional Unknown"),
]
outputs = gr.Textbox(label="Transcription")
gr.Interface(
fn=transcribe_audio,
inputs=inputs,
outputs=outputs,
title="ASR Transcription with FunASR"
).launch()