Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import requests
|
| 8 |
+
|
| 9 |
+
# Load model and processor
|
| 10 |
+
st.title("Depth Estimation using DPT")
|
| 11 |
+
st.write("Upload an image to estimate its depth map.")
|
| 12 |
+
|
| 13 |
+
@st.cache_resource
|
| 14 |
+
def load_model():
|
| 15 |
+
processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
|
| 16 |
+
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
| 17 |
+
return processor, model
|
| 18 |
+
|
| 19 |
+
processor, model = load_model()
|
| 20 |
+
|
| 21 |
+
# File uploader
|
| 22 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
| 23 |
+
|
| 24 |
+
if uploaded_file is not None:
|
| 25 |
+
image = Image.open(uploaded_file)
|
| 26 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 27 |
+
|
| 28 |
+
# Process image
|
| 29 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 30 |
+
with torch.no_grad():
|
| 31 |
+
outputs = model(**inputs)
|
| 32 |
+
predicted_depth = outputs.predicted_depth
|
| 33 |
+
|
| 34 |
+
# Interpolate to original size
|
| 35 |
+
prediction = torch.nn.functional.interpolate(
|
| 36 |
+
predicted_depth.unsqueeze(1),
|
| 37 |
+
size=image.size[::-1],
|
| 38 |
+
mode="bicubic",
|
| 39 |
+
align_corners=False,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Convert to NumPy array
|
| 43 |
+
output = prediction.squeeze().cpu().numpy()
|
| 44 |
+
normalized_depth = (output - output.min()) / (output.max() - output.min()) # Normalize to [0, 1]
|
| 45 |
+
|
| 46 |
+
# Plot the results
|
| 47 |
+
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
|
| 48 |
+
ax[0].imshow(image)
|
| 49 |
+
ax[0].set_title("Original Image")
|
| 50 |
+
ax[0].axis("off")
|
| 51 |
+
ax[1].imshow(normalized_depth, cmap="inferno")
|
| 52 |
+
ax[1].set_title("Predicted Depth Map")
|
| 53 |
+
ax[1].axis("off")
|
| 54 |
+
|
| 55 |
+
# Display result
|
| 56 |
+
st.pyplot(fig)
|