Spaces:
Sleeping
Sleeping
Create unified_document_processor.py
Browse files- unified_document_processor.py +765 -0
unified_document_processor.py
ADDED
@@ -0,0 +1,765 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict, Union
|
2 |
+
from groq import Groq
|
3 |
+
import chromadb
|
4 |
+
import os
|
5 |
+
import datetime
|
6 |
+
import json
|
7 |
+
import xml.etree.ElementTree as ET
|
8 |
+
import nltk
|
9 |
+
from nltk.tokenize import sent_tokenize
|
10 |
+
import PyPDF2
|
11 |
+
from sentence_transformers import SentenceTransformer
|
12 |
+
|
13 |
+
class CustomEmbeddingFunction:
|
14 |
+
def __init__(self):
|
15 |
+
self.model = SentenceTransformer('all-MiniLM-L6-v2')
|
16 |
+
|
17 |
+
def __call__(self, input: List[str]) -> List[List[float]]:
|
18 |
+
embeddings = self.model.encode(input)
|
19 |
+
return embeddings.tolist()
|
20 |
+
|
21 |
+
class UnifiedDocumentProcessor:
|
22 |
+
def __init__(self, groq_api_key, collection_name="unified_content"):
|
23 |
+
"""Initialize the processor with necessary clients"""
|
24 |
+
self.groq_client = Groq(api_key=groq_api_key)
|
25 |
+
|
26 |
+
# XML-specific settings
|
27 |
+
self.max_elements_per_chunk = 50
|
28 |
+
|
29 |
+
# PDF-specific settings
|
30 |
+
self.pdf_chunk_size = 500
|
31 |
+
self.pdf_overlap = 50
|
32 |
+
|
33 |
+
# Initialize NLTK
|
34 |
+
self._initialize_nltk()
|
35 |
+
|
36 |
+
# Initialize ChromaDB with a single collection for all document types
|
37 |
+
self.chroma_client = chromadb.Client()
|
38 |
+
existing_collections = self.chroma_client.list_collections()
|
39 |
+
collection_exists = any(col.name == collection_name for col in existing_collections)
|
40 |
+
|
41 |
+
if collection_exists:
|
42 |
+
print(f"Using existing collection: {collection_name}")
|
43 |
+
self.collection = self.chroma_client.get_collection(
|
44 |
+
name=collection_name,
|
45 |
+
embedding_function=CustomEmbeddingFunction()
|
46 |
+
)
|
47 |
+
else:
|
48 |
+
print(f"Creating new collection: {collection_name}")
|
49 |
+
self.collection = self.chroma_client.create_collection(
|
50 |
+
name=collection_name,
|
51 |
+
embedding_function=CustomEmbeddingFunction()
|
52 |
+
)
|
53 |
+
|
54 |
+
def _initialize_nltk(self):
|
55 |
+
"""Ensure NLTK's `punkt` tokenizer resource is available."""
|
56 |
+
try:
|
57 |
+
nltk.data.find('tokenizers/punkt')
|
58 |
+
except LookupError:
|
59 |
+
print("Downloading NLTK 'punkt' tokenizer...")
|
60 |
+
nltk.download('punkt')
|
61 |
+
|
62 |
+
def extract_text_from_pdf(self, pdf_path: str) -> str:
|
63 |
+
"""Extract text from PDF file"""
|
64 |
+
try:
|
65 |
+
text = ""
|
66 |
+
with open(pdf_path, 'rb') as file:
|
67 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
68 |
+
for page in pdf_reader.pages:
|
69 |
+
text += page.extract_text() + " "
|
70 |
+
return text.strip()
|
71 |
+
except Exception as e:
|
72 |
+
raise Exception(f"Error extracting text from PDF: {str(e)}")
|
73 |
+
|
74 |
+
def chunk_text(self, text: str) -> List[str]:
|
75 |
+
"""Split text into chunks while preserving sentence boundaries"""
|
76 |
+
sentences = sent_tokenize(text)
|
77 |
+
chunks = []
|
78 |
+
current_chunk = []
|
79 |
+
current_size = 0
|
80 |
+
|
81 |
+
for sentence in sentences:
|
82 |
+
words = sentence.split()
|
83 |
+
sentence_size = len(words)
|
84 |
+
|
85 |
+
if current_size + sentence_size > self.pdf_chunk_size:
|
86 |
+
if current_chunk:
|
87 |
+
chunks.append(' '.join(current_chunk))
|
88 |
+
overlap_words = current_chunk[-self.pdf_overlap:] if self.pdf_overlap > 0 else []
|
89 |
+
current_chunk = overlap_words + words
|
90 |
+
current_size = len(current_chunk)
|
91 |
+
else:
|
92 |
+
current_chunk = words
|
93 |
+
current_size = sentence_size
|
94 |
+
else:
|
95 |
+
current_chunk.extend(words)
|
96 |
+
current_size += sentence_size
|
97 |
+
|
98 |
+
if current_chunk:
|
99 |
+
chunks.append(' '.join(current_chunk))
|
100 |
+
|
101 |
+
return chunks
|
102 |
+
|
103 |
+
def flatten_xml_to_text(self, element, depth=0) -> str:
|
104 |
+
"""Convert XML element and its children to a flat text representation"""
|
105 |
+
text_parts = []
|
106 |
+
|
107 |
+
element_info = f"Element: {element.tag}"
|
108 |
+
if element.attrib:
|
109 |
+
element_info += f", Attributes: {json.dumps(element.attrib)}"
|
110 |
+
if element.text and element.text.strip():
|
111 |
+
element_info += f", Text: {element.text.strip()}"
|
112 |
+
text_parts.append(element_info)
|
113 |
+
|
114 |
+
for child in element:
|
115 |
+
child_text = self.flatten_xml_to_text(child, depth + 1)
|
116 |
+
text_parts.append(child_text)
|
117 |
+
|
118 |
+
return "\n".join(text_parts)
|
119 |
+
|
120 |
+
def chunk_xml_text(self, text: str, max_chunk_size: int = 2000) -> List[str]:
|
121 |
+
"""Split flattened XML text into manageable chunks"""
|
122 |
+
lines = text.split('\n')
|
123 |
+
chunks = []
|
124 |
+
current_chunk = []
|
125 |
+
current_size = 0
|
126 |
+
|
127 |
+
for line in lines:
|
128 |
+
line_size = len(line)
|
129 |
+
if current_size + line_size > max_chunk_size and current_chunk:
|
130 |
+
chunks.append('\n'.join(current_chunk))
|
131 |
+
current_chunk = []
|
132 |
+
current_size = 0
|
133 |
+
current_chunk.append(line)
|
134 |
+
current_size += line_size
|
135 |
+
|
136 |
+
if current_chunk:
|
137 |
+
chunks.append('\n'.join(current_chunk))
|
138 |
+
|
139 |
+
return chunks
|
140 |
+
|
141 |
+
def generate_natural_language(self, content: Union[List[Dict], str], content_type: str) -> str:
|
142 |
+
"""Generate natural language description with improved error handling and chunking"""
|
143 |
+
try:
|
144 |
+
if content_type == "xml":
|
145 |
+
prompt = f"Convert this XML structure description to a natural language summary: {content}"
|
146 |
+
else: # pdf
|
147 |
+
prompt = f"Summarize this text while preserving key information: {content}"
|
148 |
+
|
149 |
+
max_prompt_length = 4000
|
150 |
+
if len(prompt) > max_prompt_length:
|
151 |
+
prompt = prompt[:max_prompt_length] + "..."
|
152 |
+
|
153 |
+
response = self.groq_client.chat.completions.create(
|
154 |
+
messages=[{"role": "user", "content": prompt}],
|
155 |
+
model="llama3-8b-8192",
|
156 |
+
max_tokens=1000
|
157 |
+
)
|
158 |
+
return response.choices[0].message.content
|
159 |
+
except Exception as e:
|
160 |
+
print(f"Error generating natural language: {str(e)}")
|
161 |
+
if len(content) > 2000:
|
162 |
+
half_length = len(content) // 2
|
163 |
+
first_half = content[:half_length]
|
164 |
+
try:
|
165 |
+
return self.generate_natural_language(first_half, content_type)
|
166 |
+
except:
|
167 |
+
return None
|
168 |
+
return None
|
169 |
+
|
170 |
+
# Additional methods (unchanged but structured for easier review)...
|
171 |
+
|
172 |
+
def store_in_vector_db(self, natural_language: str, metadata: Dict) -> str:
|
173 |
+
"""Store content in vector database"""
|
174 |
+
doc_id = f"{metadata['source_file']}_{metadata['content_type']}_{metadata['chunk_id']}_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
175 |
+
|
176 |
+
self.collection.add(
|
177 |
+
documents=[natural_language],
|
178 |
+
metadatas=[metadata],
|
179 |
+
ids=[doc_id]
|
180 |
+
)
|
181 |
+
|
182 |
+
return doc_id
|
183 |
+
|
184 |
+
def process_file(self, file_path: str) -> Dict:
|
185 |
+
"""Process any supported file type"""
|
186 |
+
try:
|
187 |
+
file_extension = os.path.splitext(file_path)[1].lower()
|
188 |
+
|
189 |
+
if file_extension == '.xml':
|
190 |
+
return self.process_xml_file(file_path)
|
191 |
+
elif file_extension == '.pdf':
|
192 |
+
return self.process_pdf_file(file_path)
|
193 |
+
else:
|
194 |
+
return {
|
195 |
+
'success': False,
|
196 |
+
'error': f'Unsupported file type: {file_extension}'
|
197 |
+
}
|
198 |
+
except Exception as e:
|
199 |
+
return {
|
200 |
+
'success': False,
|
201 |
+
'error': f'Error processing file: {str(e)}'
|
202 |
+
}
|
203 |
+
|
204 |
+
def process_xml_file(self, xml_file_path: str) -> Dict:
|
205 |
+
"""Process XML file with improved chunking"""
|
206 |
+
try:
|
207 |
+
tree = ET.parse(xml_file_path)
|
208 |
+
root = tree.getroot()
|
209 |
+
flattened_text = self.flatten_xml_to_text(root)
|
210 |
+
chunks = self.chunk_xml_text(flattened_text)
|
211 |
+
|
212 |
+
print(f"Split XML into {len(chunks)} chunks")
|
213 |
+
results = []
|
214 |
+
|
215 |
+
for i, chunk in enumerate(chunks):
|
216 |
+
print(f"Processing XML chunk {i+1}/{len(chunks)}")
|
217 |
+
try:
|
218 |
+
natural_language = self.generate_natural_language(chunk, "xml")
|
219 |
+
|
220 |
+
if natural_language:
|
221 |
+
metadata = {
|
222 |
+
'source_file': os.path.basename(xml_file_path),
|
223 |
+
'content_type': 'xml',
|
224 |
+
'chunk_id': i,
|
225 |
+
'total_chunks': len(chunks),
|
226 |
+
'timestamp': str(datetime.datetime.now())
|
227 |
+
}
|
228 |
+
doc_id = self.store_in_vector_db(natural_language, metadata)
|
229 |
+
results.append({
|
230 |
+
'chunk': i,
|
231 |
+
'success': True,
|
232 |
+
'doc_id': doc_id,
|
233 |
+
'natural_language': natural_language
|
234 |
+
})
|
235 |
+
else:
|
236 |
+
results.append({
|
237 |
+
'chunk': i,
|
238 |
+
'success': False,
|
239 |
+
'error': 'Failed to generate natural language'
|
240 |
+
})
|
241 |
+
except Exception as e:
|
242 |
+
print(f"Error processing chunk {i}: {str(e)}")
|
243 |
+
results.append({
|
244 |
+
'chunk': i,
|
245 |
+
'success': False,
|
246 |
+
'error': str(e)
|
247 |
+
})
|
248 |
+
|
249 |
+
return {
|
250 |
+
'success': True,
|
251 |
+
'total_chunks': len(chunks),
|
252 |
+
'results': results
|
253 |
+
}
|
254 |
+
|
255 |
+
except Exception as e:
|
256 |
+
return {
|
257 |
+
'success': False,
|
258 |
+
'error': str(e)
|
259 |
+
}
|
260 |
+
|
261 |
+
def process_pdf_file(self, pdf_file_path: str) -> Dict:
|
262 |
+
"""Process PDF file"""
|
263 |
+
try:
|
264 |
+
full_text = self.extract_text_from_pdf(pdf_file_path)
|
265 |
+
chunks = self.chunk_text(full_text)
|
266 |
+
|
267 |
+
print(f"Split PDF into {len(chunks)} chunks")
|
268 |
+
results = []
|
269 |
+
|
270 |
+
for i, chunk in enumerate(chunks):
|
271 |
+
print(f"Processing PDF chunk {i+1}/{len(chunks)}")
|
272 |
+
natural_language = self.generate_natural_language(chunk, "pdf")
|
273 |
+
|
274 |
+
if natural_language:
|
275 |
+
metadata = {
|
276 |
+
'source_file': os.path.basename(pdf_file_path),
|
277 |
+
'content_type': 'pdf',
|
278 |
+
'chunk_id': i,
|
279 |
+
'total_chunks': len(chunks),
|
280 |
+
'timestamp': str(datetime.datetime.now()),
|
281 |
+
'chunk_size': len(chunk.split())
|
282 |
+
}
|
283 |
+
doc_id = self.store_in_vector_db(natural_language, metadata)
|
284 |
+
results.append({
|
285 |
+
'chunk': i,
|
286 |
+
'success': True,
|
287 |
+
'doc_id': doc_id,
|
288 |
+
'natural_language': natural_language,
|
289 |
+
'original_text': chunk[:200] + "..."
|
290 |
+
})
|
291 |
+
else:
|
292 |
+
results.append({
|
293 |
+
'chunk': i,
|
294 |
+
'success': False,
|
295 |
+
'error': 'Failed to generate natural language summary'
|
296 |
+
})
|
297 |
+
|
298 |
+
return {
|
299 |
+
'success': True,
|
300 |
+
'total_chunks': len(chunks),
|
301 |
+
'results': results
|
302 |
+
}
|
303 |
+
|
304 |
+
except Exception as e:
|
305 |
+
return {
|
306 |
+
'success': False,
|
307 |
+
'error': str(e)
|
308 |
+
}
|
309 |
+
|
310 |
+
def get_available_files(self) -> Dict[str, List[str]]:
|
311 |
+
"""Get list of all files in the database"""
|
312 |
+
try:
|
313 |
+
all_entries = self.collection.get(
|
314 |
+
include=['metadatas']
|
315 |
+
)
|
316 |
+
|
317 |
+
files = {
|
318 |
+
'pdf': set(),
|
319 |
+
'xml': set()
|
320 |
+
}
|
321 |
+
|
322 |
+
for metadata in all_entries['metadatas']:
|
323 |
+
file_type = metadata['content_type']
|
324 |
+
file_name = metadata['source_file']
|
325 |
+
files[file_type].add(file_name)
|
326 |
+
|
327 |
+
return {
|
328 |
+
'pdf': sorted(list(files['pdf'])),
|
329 |
+
'xml': sorted(list(files['xml']))
|
330 |
+
}
|
331 |
+
except Exception as e:
|
332 |
+
print(f"Error getting available files: {str(e)}")
|
333 |
+
return {'pdf': [], 'xml': []}
|
334 |
+
|
335 |
+
def ask_question_selective(self, question: str, selected_files: List[str], n_results: int = 5) -> str:
|
336 |
+
"""Ask a question using only the selected files"""
|
337 |
+
try:
|
338 |
+
filter_dict = {
|
339 |
+
'source_file': {'$in': selected_files}
|
340 |
+
}
|
341 |
+
|
342 |
+
results = self.collection.query(
|
343 |
+
query_texts=[question],
|
344 |
+
n_results=n_results,
|
345 |
+
where=filter_dict,
|
346 |
+
include=["documents", "metadatas"]
|
347 |
+
)
|
348 |
+
|
349 |
+
if not results['documents'][0]:
|
350 |
+
return "No relevant content found in the selected files."
|
351 |
+
|
352 |
+
context = "\n\n".join(results['documents'][0])
|
353 |
+
|
354 |
+
prompt = f"""Based on the following content from the selected files, please answer this question: {question}
|
355 |
+
|
356 |
+
Content:
|
357 |
+
{context}
|
358 |
+
|
359 |
+
Please provide a direct answer based only on the information provided above."""
|
360 |
+
|
361 |
+
response = self.groq_client.chat.completions.create(
|
362 |
+
messages=[{"role": "user", "content": prompt}],
|
363 |
+
model="llama3-8b-8192",
|
364 |
+
temperature=0.2
|
365 |
+
)
|
366 |
+
|
367 |
+
return response.choices[0].message.content
|
368 |
+
|
369 |
+
except Exception as e:
|
370 |
+
return f"Error processing your question: {str(e)}"
|
371 |
+
|
372 |
+
|
373 |
+
from typing import List, Dict, Union
|
374 |
+
from groq import Groq
|
375 |
+
import chromadb
|
376 |
+
import os
|
377 |
+
import datetime
|
378 |
+
import json
|
379 |
+
import xml.etree.ElementTree as ET
|
380 |
+
import nltk
|
381 |
+
from nltk.tokenize import sent_tokenize
|
382 |
+
import PyPDF2
|
383 |
+
from sentence_transformers import SentenceTransformer
|
384 |
+
|
385 |
+
class CustomEmbeddingFunction:
|
386 |
+
def __init__(self):
|
387 |
+
self.model = SentenceTransformer('all-MiniLM-L6-v2')
|
388 |
+
|
389 |
+
def __call__(self, input: List[str]) -> List[List[float]]:
|
390 |
+
embeddings = self.model.encode(input)
|
391 |
+
return embeddings.tolist()
|
392 |
+
|
393 |
+
class UnifiedDocumentProcessor:
|
394 |
+
def __init__(self, groq_api_key, collection_name="unified_content"):
|
395 |
+
"""Initialize the processor with necessary clients"""
|
396 |
+
self.groq_client = Groq(api_key=groq_api_key)
|
397 |
+
|
398 |
+
# XML-specific settings
|
399 |
+
self.max_elements_per_chunk = 50
|
400 |
+
|
401 |
+
# PDF-specific settings
|
402 |
+
self.pdf_chunk_size = 500
|
403 |
+
self.pdf_overlap = 50
|
404 |
+
|
405 |
+
# Initialize NLTK - Updated to handle both resources
|
406 |
+
self._initialize_nltk()
|
407 |
+
|
408 |
+
# Initialize ChromaDB with a single collection for all document types
|
409 |
+
self.chroma_client = chromadb.Client()
|
410 |
+
existing_collections = self.chroma_client.list_collections()
|
411 |
+
collection_exists = any(col.name == collection_name for col in existing_collections)
|
412 |
+
|
413 |
+
if collection_exists:
|
414 |
+
print(f"Using existing collection: {collection_name}")
|
415 |
+
self.collection = self.chroma_client.get_collection(
|
416 |
+
name=collection_name,
|
417 |
+
embedding_function=CustomEmbeddingFunction()
|
418 |
+
)
|
419 |
+
else:
|
420 |
+
print(f"Creating new collection: {collection_name}")
|
421 |
+
self.collection = self.chroma_client.create_collection(
|
422 |
+
name=collection_name,
|
423 |
+
embedding_function=CustomEmbeddingFunction()
|
424 |
+
)
|
425 |
+
|
426 |
+
def _initialize_nltk(self):
|
427 |
+
"""Ensure both NLTK resources are available."""
|
428 |
+
try:
|
429 |
+
nltk.download('punkt')
|
430 |
+
try:
|
431 |
+
nltk.data.find('tokenizers/punkt_tab')
|
432 |
+
except LookupError:
|
433 |
+
nltk.download('punkt_tab')
|
434 |
+
except Exception as e:
|
435 |
+
print(f"Warning: Error downloading NLTK resources: {str(e)}")
|
436 |
+
print("Falling back to basic sentence splitting...")
|
437 |
+
|
438 |
+
def _basic_sentence_split(self, text: str) -> List[str]:
|
439 |
+
"""Fallback method for sentence tokenization"""
|
440 |
+
sentences = []
|
441 |
+
current = ""
|
442 |
+
|
443 |
+
for char in text:
|
444 |
+
current += char
|
445 |
+
if char in ['.', '!', '?'] and len(current.strip()) > 0:
|
446 |
+
sentences.append(current.strip())
|
447 |
+
current = ""
|
448 |
+
|
449 |
+
if current.strip():
|
450 |
+
sentences.append(current.strip())
|
451 |
+
|
452 |
+
return sentences
|
453 |
+
|
454 |
+
def process_file(self, file_path: str) -> Dict:
|
455 |
+
"""Process any supported file type"""
|
456 |
+
try:
|
457 |
+
file_extension = os.path.splitext(file_path)[1].lower()
|
458 |
+
|
459 |
+
if file_extension == '.xml':
|
460 |
+
return self.process_xml_file(file_path)
|
461 |
+
elif file_extension == '.pdf':
|
462 |
+
return self.process_pdf_file(file_path)
|
463 |
+
else:
|
464 |
+
return {
|
465 |
+
'success': False,
|
466 |
+
'error': f'Unsupported file type: {file_extension}'
|
467 |
+
}
|
468 |
+
except Exception as e:
|
469 |
+
return {
|
470 |
+
'success': False,
|
471 |
+
'error': f'Error processing file: {str(e)}'
|
472 |
+
}
|
473 |
+
|
474 |
+
def extract_text_from_pdf(self, pdf_path: str) -> str:
|
475 |
+
"""Extract text from PDF file"""
|
476 |
+
try:
|
477 |
+
text = ""
|
478 |
+
with open(pdf_path, 'rb') as file:
|
479 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
480 |
+
for page in pdf_reader.pages:
|
481 |
+
text += page.extract_text() + " "
|
482 |
+
return text.strip()
|
483 |
+
except Exception as e:
|
484 |
+
raise Exception(f"Error extracting text from PDF: {str(e)}")
|
485 |
+
|
486 |
+
def chunk_text(self, text: str) -> List[str]:
|
487 |
+
"""Split text into chunks while preserving sentence boundaries"""
|
488 |
+
try:
|
489 |
+
sentences = sent_tokenize(text)
|
490 |
+
except Exception as e:
|
491 |
+
print(f"Warning: Using fallback sentence splitting: {str(e)}")
|
492 |
+
sentences = self._basic_sentence_split(text)
|
493 |
+
|
494 |
+
chunks = []
|
495 |
+
current_chunk = []
|
496 |
+
current_size = 0
|
497 |
+
|
498 |
+
for sentence in sentences:
|
499 |
+
words = sentence.split()
|
500 |
+
sentence_size = len(words)
|
501 |
+
|
502 |
+
if current_size + sentence_size > self.pdf_chunk_size:
|
503 |
+
if current_chunk:
|
504 |
+
chunks.append(' '.join(current_chunk))
|
505 |
+
overlap_words = current_chunk[-self.pdf_overlap:] if self.pdf_overlap > 0 else []
|
506 |
+
current_chunk = overlap_words + words
|
507 |
+
current_size = len(current_chunk)
|
508 |
+
else:
|
509 |
+
current_chunk = words
|
510 |
+
current_size = sentence_size
|
511 |
+
else:
|
512 |
+
current_chunk.extend(words)
|
513 |
+
current_size += sentence_size
|
514 |
+
|
515 |
+
if current_chunk:
|
516 |
+
chunks.append(' '.join(current_chunk))
|
517 |
+
|
518 |
+
return chunks
|
519 |
+
|
520 |
+
def flatten_xml_to_text(self, element, depth=0) -> str:
|
521 |
+
"""Convert XML element and its children to a flat text representation"""
|
522 |
+
text_parts = []
|
523 |
+
|
524 |
+
element_info = f"Element: {element.tag}"
|
525 |
+
if element.attrib:
|
526 |
+
element_info += f", Attributes: {json.dumps(element.attrib)}"
|
527 |
+
if element.text and element.text.strip():
|
528 |
+
element_info += f", Text: {element.text.strip()}"
|
529 |
+
text_parts.append(element_info)
|
530 |
+
|
531 |
+
for child in element:
|
532 |
+
child_text = self.flatten_xml_to_text(child, depth + 1)
|
533 |
+
text_parts.append(child_text)
|
534 |
+
|
535 |
+
return "\n".join(text_parts)
|
536 |
+
|
537 |
+
def chunk_xml_text(self, text: str, max_chunk_size: int = 2000) -> List[str]:
|
538 |
+
"""Split flattened XML text into manageable chunks"""
|
539 |
+
lines = text.split('\n')
|
540 |
+
chunks = []
|
541 |
+
current_chunk = []
|
542 |
+
current_size = 0
|
543 |
+
|
544 |
+
for line in lines:
|
545 |
+
line_size = len(line)
|
546 |
+
if current_size + line_size > max_chunk_size and current_chunk:
|
547 |
+
chunks.append('\n'.join(current_chunk))
|
548 |
+
current_chunk = []
|
549 |
+
current_size = 0
|
550 |
+
current_chunk.append(line)
|
551 |
+
current_size += line_size
|
552 |
+
|
553 |
+
if current_chunk:
|
554 |
+
chunks.append('\n'.join(current_chunk))
|
555 |
+
|
556 |
+
return chunks
|
557 |
+
|
558 |
+
def generate_natural_language(self, content: Union[List[Dict], str], content_type: str) -> str:
|
559 |
+
"""Generate natural language description with improved error handling and chunking"""
|
560 |
+
try:
|
561 |
+
if content_type == "xml":
|
562 |
+
prompt = f"Convert this XML structure description to a natural language summary: {content}"
|
563 |
+
else: # pdf
|
564 |
+
prompt = f"Summarize this text while preserving key information: {content}"
|
565 |
+
|
566 |
+
max_prompt_length = 4000
|
567 |
+
if len(prompt) > max_prompt_length:
|
568 |
+
prompt = prompt[:max_prompt_length] + "..."
|
569 |
+
|
570 |
+
response = self.groq_client.chat.completions.create(
|
571 |
+
messages=[{"role": "user", "content": prompt}],
|
572 |
+
model="llama3-8b-8192",
|
573 |
+
max_tokens=1000
|
574 |
+
)
|
575 |
+
return response.choices[0].message.content
|
576 |
+
except Exception as e:
|
577 |
+
print(f"Error generating natural language: {str(e)}")
|
578 |
+
if len(content) > 2000:
|
579 |
+
half_length = len(content) // 2
|
580 |
+
first_half = content[:half_length]
|
581 |
+
try:
|
582 |
+
return self.generate_natural_language(first_half, content_type)
|
583 |
+
except:
|
584 |
+
return None
|
585 |
+
return None
|
586 |
+
|
587 |
+
def store_in_vector_db(self, natural_language: str, metadata: Dict) -> str:
|
588 |
+
"""Store content in vector database"""
|
589 |
+
doc_id = f"{metadata['source_file']}_{metadata['content_type']}_{metadata['chunk_id']}_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
590 |
+
|
591 |
+
self.collection.add(
|
592 |
+
documents=[natural_language],
|
593 |
+
metadatas=[metadata],
|
594 |
+
ids=[doc_id]
|
595 |
+
)
|
596 |
+
|
597 |
+
return doc_id
|
598 |
+
|
599 |
+
def process_xml_file(self, xml_file_path: str) -> Dict:
|
600 |
+
"""Process XML file with improved chunking"""
|
601 |
+
try:
|
602 |
+
tree = ET.parse(xml_file_path)
|
603 |
+
root = tree.getroot()
|
604 |
+
flattened_text = self.flatten_xml_to_text(root)
|
605 |
+
chunks = self.chunk_xml_text(flattened_text)
|
606 |
+
|
607 |
+
print(f"Split XML into {len(chunks)} chunks")
|
608 |
+
results = []
|
609 |
+
|
610 |
+
for i, chunk in enumerate(chunks):
|
611 |
+
print(f"Processing XML chunk {i+1}/{len(chunks)}")
|
612 |
+
try:
|
613 |
+
natural_language = self.generate_natural_language(chunk, "xml")
|
614 |
+
|
615 |
+
if natural_language:
|
616 |
+
metadata = {
|
617 |
+
'source_file': os.path.basename(xml_file_path),
|
618 |
+
'content_type': 'xml',
|
619 |
+
'chunk_id': i,
|
620 |
+
'total_chunks': len(chunks),
|
621 |
+
'timestamp': str(datetime.datetime.now())
|
622 |
+
}
|
623 |
+
doc_id = self.store_in_vector_db(natural_language, metadata)
|
624 |
+
results.append({
|
625 |
+
'chunk': i,
|
626 |
+
'success': True,
|
627 |
+
'doc_id': doc_id,
|
628 |
+
'natural_language': natural_language
|
629 |
+
})
|
630 |
+
else:
|
631 |
+
results.append({
|
632 |
+
'chunk': i,
|
633 |
+
'success': False,
|
634 |
+
'error': 'Failed to generate natural language'
|
635 |
+
})
|
636 |
+
except Exception as e:
|
637 |
+
print(f"Error processing chunk {i}: {str(e)}")
|
638 |
+
results.append({
|
639 |
+
'chunk': i,
|
640 |
+
'success': False,
|
641 |
+
'error': str(e)
|
642 |
+
})
|
643 |
+
|
644 |
+
return {
|
645 |
+
'success': True,
|
646 |
+
'total_chunks': len(chunks),
|
647 |
+
'results': results
|
648 |
+
}
|
649 |
+
|
650 |
+
except Exception as e:
|
651 |
+
return {
|
652 |
+
'success': False,
|
653 |
+
'error': str(e)
|
654 |
+
}
|
655 |
+
|
656 |
+
def process_pdf_file(self, pdf_file_path: str) -> Dict:
|
657 |
+
"""Process PDF file"""
|
658 |
+
try:
|
659 |
+
full_text = self.extract_text_from_pdf(pdf_file_path)
|
660 |
+
chunks = self.chunk_text(full_text)
|
661 |
+
|
662 |
+
print(f"Split PDF into {len(chunks)} chunks")
|
663 |
+
results = []
|
664 |
+
|
665 |
+
for i, chunk in enumerate(chunks):
|
666 |
+
print(f"Processing PDF chunk {i+1}/{len(chunks)}")
|
667 |
+
natural_language = self.generate_natural_language(chunk, "pdf")
|
668 |
+
|
669 |
+
if natural_language:
|
670 |
+
metadata = {
|
671 |
+
'source_file': os.path.basename(pdf_file_path),
|
672 |
+
'content_type': 'pdf',
|
673 |
+
'chunk_id': i,
|
674 |
+
'total_chunks': len(chunks),
|
675 |
+
'timestamp': str(datetime.datetime.now()),
|
676 |
+
'chunk_size': len(chunk.split())
|
677 |
+
}
|
678 |
+
doc_id = self.store_in_vector_db(natural_language, metadata)
|
679 |
+
results.append({
|
680 |
+
'chunk': i,
|
681 |
+
'success': True,
|
682 |
+
'doc_id': doc_id,
|
683 |
+
'natural_language': natural_language,
|
684 |
+
'original_text': chunk[:200] + "..."
|
685 |
+
})
|
686 |
+
else:
|
687 |
+
results.append({
|
688 |
+
'chunk': i,
|
689 |
+
'success': False,
|
690 |
+
'error': 'Failed to generate natural language summary'
|
691 |
+
})
|
692 |
+
|
693 |
+
return {
|
694 |
+
'success': True,
|
695 |
+
'total_chunks': len(chunks),
|
696 |
+
'results': results
|
697 |
+
}
|
698 |
+
|
699 |
+
except Exception as e:
|
700 |
+
return {
|
701 |
+
'success': False,
|
702 |
+
'error': str(e)
|
703 |
+
}
|
704 |
+
|
705 |
+
def get_available_files(self) -> Dict[str, List[str]]:
|
706 |
+
"""Get list of all files in the database"""
|
707 |
+
try:
|
708 |
+
all_entries = self.collection.get(
|
709 |
+
include=['metadatas']
|
710 |
+
)
|
711 |
+
|
712 |
+
files = {
|
713 |
+
'pdf': set(),
|
714 |
+
'xml': set()
|
715 |
+
}
|
716 |
+
|
717 |
+
for metadata in all_entries['metadatas']:
|
718 |
+
file_type = metadata['content_type']
|
719 |
+
file_name = metadata['source_file']
|
720 |
+
files[file_type].add(file_name)
|
721 |
+
|
722 |
+
return {
|
723 |
+
'pdf': sorted(list(files['pdf'])),
|
724 |
+
'xml': sorted(list(files['xml']))
|
725 |
+
}
|
726 |
+
except Exception as e:
|
727 |
+
print(f"Error getting available files: {str(e)}")
|
728 |
+
return {'pdf': [], 'xml': []}
|
729 |
+
|
730 |
+
def ask_question_selective(self, question: str, selected_files: List[str], n_results: int = 5) -> str:
|
731 |
+
"""Ask a question using only the selected files"""
|
732 |
+
try:
|
733 |
+
filter_dict = {
|
734 |
+
'source_file': {'$in': selected_files}
|
735 |
+
}
|
736 |
+
|
737 |
+
results = self.collection.query(
|
738 |
+
query_texts=[question],
|
739 |
+
n_results=n_results,
|
740 |
+
where=filter_dict,
|
741 |
+
include=["documents", "metadatas"]
|
742 |
+
)
|
743 |
+
|
744 |
+
if not results['documents'][0]:
|
745 |
+
return "No relevant content found in the selected files."
|
746 |
+
|
747 |
+
context = "\n\n".join(results['documents'][0])
|
748 |
+
|
749 |
+
prompt = f"""Based on the following content from the selected files, please answer this question: {question}
|
750 |
+
|
751 |
+
Content:
|
752 |
+
{context}
|
753 |
+
|
754 |
+
Please provide a direct answer based only on the information provided above."""
|
755 |
+
|
756 |
+
response = self.groq_client.chat.completions.create(
|
757 |
+
messages=[{"role": "user", "content": prompt}],
|
758 |
+
model="llama3-8b-8192",
|
759 |
+
temperature=0.2
|
760 |
+
)
|
761 |
+
|
762 |
+
return response.choices[0].message.content
|
763 |
+
|
764 |
+
except Exception as e:
|
765 |
+
return f"Error processing your question: {str(e)}"
|