Spaces:
Sleeping
Sleeping
TahaRasouli
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from groq import Groq
|
5 |
+
|
6 |
+
# Function to recursively extract all unique keys
|
7 |
+
def extract_keys(data, parent_key='', keys_set=None):
|
8 |
+
if keys_set is None:
|
9 |
+
keys_set = set()
|
10 |
+
|
11 |
+
if isinstance(data, dict):
|
12 |
+
for key, value in data.items():
|
13 |
+
full_key = f"{parent_key}.{key}" if parent_key else key
|
14 |
+
keys_set.add(full_key)
|
15 |
+
extract_keys(value, full_key, keys_set)
|
16 |
+
elif isinstance(data, list):
|
17 |
+
for item in data:
|
18 |
+
extract_keys(item, parent_key, keys_set)
|
19 |
+
|
20 |
+
return keys_set
|
21 |
+
|
22 |
+
# Function to recursively extract all values for a specific full key path
|
23 |
+
def extract_values(data, full_key_path, parent_key=''):
|
24 |
+
values = []
|
25 |
+
current_key = full_key_path.split('.')[0]
|
26 |
+
remaining_path = '.'.join(full_key_path.split('.')[1:])
|
27 |
+
|
28 |
+
if isinstance(data, dict):
|
29 |
+
for key, value in data.items():
|
30 |
+
if key == current_key:
|
31 |
+
if remaining_path:
|
32 |
+
values.extend(extract_values(value, remaining_path))
|
33 |
+
else:
|
34 |
+
values.append(value)
|
35 |
+
elif isinstance(value, (dict, list)):
|
36 |
+
values.extend(extract_values(value, full_key_path, parent_key=key))
|
37 |
+
|
38 |
+
elif isinstance(data, list):
|
39 |
+
for item in data:
|
40 |
+
values.extend(extract_values(item, full_key_path))
|
41 |
+
|
42 |
+
return values
|
43 |
+
|
44 |
+
# Streamlit App
|
45 |
+
def main():
|
46 |
+
st.title("JSON Enquiry")
|
47 |
+
|
48 |
+
# Sidebar for file upload and key selection
|
49 |
+
st.sidebar.title("Options")
|
50 |
+
|
51 |
+
uploaded_file = st.sidebar.file_uploader("Upload a JSON file", type="json")
|
52 |
+
|
53 |
+
if uploaded_file is not None:
|
54 |
+
data = json.load(uploaded_file)
|
55 |
+
|
56 |
+
# Extract unique keys
|
57 |
+
unique_keys = extract_keys(data)
|
58 |
+
|
59 |
+
# Display the unique keys
|
60 |
+
st.sidebar.subheader("Unique Keys")
|
61 |
+
selected_keys = st.sidebar.multiselect("Select keys to extract values for", sorted(unique_keys))
|
62 |
+
|
63 |
+
if selected_keys:
|
64 |
+
st.subheader("Extracted Values")
|
65 |
+
selected_json_content = {}
|
66 |
+
for key in selected_keys:
|
67 |
+
values = extract_values(data, key)
|
68 |
+
selected_json_content[key] = values
|
69 |
+
st.write(f"**Values for '{key}':**")
|
70 |
+
st.write(values)
|
71 |
+
|
72 |
+
# Convert selected content to a JSON string
|
73 |
+
selected_json_string = json.dumps(selected_json_content, indent=2)
|
74 |
+
|
75 |
+
# Create a prompt using the prefabricated template
|
76 |
+
prefabricated_prompt = f"Convert the given json object into unstructured readable paragraph. Output just the final paragraph. json: {selected_json_string}"
|
77 |
+
|
78 |
+
# Initialize the LLM client once
|
79 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
80 |
+
|
81 |
+
if 'messages' not in st.session_state:
|
82 |
+
st.session_state['messages'] = []
|
83 |
+
|
84 |
+
if st.button("Explain JSON!"):
|
85 |
+
# Add initial prompt to messages
|
86 |
+
st.session_state.messages.append({"role": "user", "content": prefabricated_prompt})
|
87 |
+
|
88 |
+
chat_completion = client.chat.completions.create(
|
89 |
+
messages=st.session_state.messages,
|
90 |
+
model="llama3-8b-8192",
|
91 |
+
)
|
92 |
+
|
93 |
+
response_content = chat_completion.choices[0].message.content
|
94 |
+
st.session_state.messages.append({"role": "assistant", "content": response_content})
|
95 |
+
|
96 |
+
# Display only the assistant's responses in the chat history
|
97 |
+
st.subheader("LLM Responses")
|
98 |
+
for msg in st.session_state.messages:
|
99 |
+
if msg['role'] == 'assistant':
|
100 |
+
st.write(f"**Assistant:** {msg['content']}")
|
101 |
+
|
102 |
+
# Input for follow-up messages
|
103 |
+
follow_up_message = st.text_area("Enter your message:", height=100)
|
104 |
+
|
105 |
+
if st.button("Send Follow-Up"):
|
106 |
+
if follow_up_message.strip() != "":
|
107 |
+
st.session_state.messages.append({"role": "user", "content": follow_up_message})
|
108 |
+
|
109 |
+
chat_completion = client.chat.completions.create(
|
110 |
+
messages=st.session_state.messages,
|
111 |
+
model="llama3-8b-8192",
|
112 |
+
)
|
113 |
+
|
114 |
+
response_content = chat_completion.choices[0].message.content
|
115 |
+
st.session_state.messages.append({"role": "assistant", "content": response_content})
|
116 |
+
|
117 |
+
st.write(f"**Assistant:** {response_content}")
|
118 |
+
else:
|
119 |
+
st.warning("Please enter a message to continue the conversation.")
|
120 |
+
else:
|
121 |
+
st.sidebar.warning("Select at least one key to extract values.")
|
122 |
+
else:
|
123 |
+
st.sidebar.info("Please upload a JSON file to get started.")
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
main()
|