Spaces:
Sleeping
Sleeping
import gradio as gr | |
from musiclang_predict import MusicLangPredictor | |
from musiclang import Score | |
from midi2audio import FluidSynth | |
import os | |
import tempfile | |
def inner_loop(midi_file, chord_progression, tempo, temperature, nb_tokens, bar_range): | |
top_p = 0.98 | |
seed = 0 | |
# Initialize the MusicLangPredictor | |
ml = MusicLangPredictor('musiclang/musiclang-v2') | |
tempo_message = "" # Default message if no MIDI file is uploaded | |
time_signature = (4, 4) | |
if midi_file is not None and midi_file != "": | |
# Load the MIDI file and use it as the score prompt | |
filepath = midi_file | |
start_bar, end_bar = map(int, bar_range.split("-")) | |
score = Score.from_midi(filepath, chord_range=(start_bar, end_bar)) | |
tempo = score.config['tempo'] # Use the tempo from the MIDI file and change input | |
time_signature = score.config['time_signature'] | |
time_signature = (time_signature[1], time_signature[2]) | |
tempo_message = f"Warning : real tempo of file is : {int(tempo)} BPM." # Update message based on MIDI file | |
else: | |
score = None # Default score is None if no MIDI file is uploaded | |
# Generate the score based on provided inputs and the uploaded MIDI file if available | |
if chord_progression.strip() == "" and score is None: | |
# Generate without specific chord progression or MIDI prompt | |
generated_score = ml.predict( | |
nb_tokens=int(nb_tokens), | |
temperature=float(temperature), | |
topp=top_p, | |
rng_seed=seed | |
) | |
elif score is not None and chord_progression.strip() == "": | |
# Generate using the uploaded MIDI file as a prompt | |
generated_score = ml.predict( | |
score=score, # Use the uploaded MIDI as the score prompt | |
nb_tokens=int(nb_tokens), | |
temperature=float(temperature), | |
topp=top_p, | |
rng_seed=seed | |
) | |
else: | |
# Generate with specific chord progression | |
generated_score = ml.predict_chords( | |
chord_progression, | |
score=score, # Use the uploaded MIDI as the score prompt | |
time_signature=time_signature, | |
temperature=temperature, | |
topp=top_p, | |
rng_seed=seed | |
) | |
chord_repr = generated_score.to_chord_repr() | |
# Save the generated score as a MIDI file | |
temp_midi_file = tempfile.NamedTemporaryFile(suffix=".mid", delete=False) | |
midi_path = temp_midi_file.name | |
generated_score.to_midi(midi_path, tempo=tempo, time_signature=time_signature) | |
# Convert MIDI to WAV then WAV to MP3 for playback | |
temp_wav_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False) | |
temp_mp3_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) | |
wav_path = temp_wav_file.name | |
mp3_path = temp_mp3_file.name | |
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2").midi_to_audio(midi_path, wav_path) | |
os.system(f'ffmpeg -i {wav_path} -acodec libmp3lame -y -loglevel quiet -stats {mp3_path}') | |
# Remove the temporary WAV file | |
os.remove(wav_path) | |
return mp3_path, midi_path, chord_repr, tempo_message | |
def musiclang(midi_file, chord_progression, tempo, temperature, nb_tokens, bar_range): | |
exception = None | |
mp3_path, midi_path, chord_repr, tempo_message = None, None, None, "" | |
try: | |
mp3_path, midi_path, chord_repr, tempo_message = inner_loop(midi_file, chord_progression, tempo, temperature, nb_tokens, bar_range) | |
except Exception as e: | |
exception = "Error : " + e.__class__.__name__ + " " + str(e) | |
# Return the MP3 path for Gradio to display and the MIDI file path for download | |
return mp3_path, midi_path, exception | |
with gr.Blocks() as demo: | |
# Introductory text | |
gr.Markdown(""" | |
# Controllable Symbolic Music Generation with MusicLang Predict | |
[MusicLang Predict](https://github.com/musiclang/musiclang_predict) offers advanced controllability features and high-quality music generation by manipulating symbolic music. | |
You can for example use it to continue your composition with a specific chord progression. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
midi_file = gr.File(label="Prompt MIDI File (Optional)", type="filepath", file_types=[".mid", ".midi"], | |
elem_id='midi_file_input') | |
with gr.Column(): | |
bar_range = gr.Textbox(label="Bar Range of input file (eg: 0-4 for first four bars)", placeholder="0-4", | |
value="0-4", elem_id='bar_range_input') | |
nb_tokens = gr.Number(label="Nb Tokens", | |
value=512, minimum=256, maximum=2048, step=256, elem_id='nb_tokens_input') | |
temperature = gr.Slider( | |
label="Temperature", | |
value=0.95, | |
visible=False, | |
minimum=0.1, maximum=1.0, step=0.1, elem_id='temperature_input') | |
tempo = gr.Slider(label="Tempo", value=120, minimum=60, maximum=240, step=1, elem_id='tempo_input') | |
with gr.Row(): | |
chord_progression = gr.Textbox( | |
label="Chord Progression (Optional)", | |
placeholder="Am CM Dm7/F E7 Asus4", lines=2, value="", elem_id='chord_progression_input') | |
with gr.Row(): | |
generate_btn = gr.Button("Generate", elem_id='generate_button') | |
with gr.Column(): | |
info_message = gr.Textbox(label="Info Message", elem_id='info_message_output') | |
generated_music = gr.Audio(label="Preview generated Music", elem_id='generated_music_output') | |
generated_midi = gr.File(label="Download MIDI", elem_id='generated_midi_output') | |
generate_btn.click( | |
fn=musiclang, | |
inputs=[midi_file, chord_progression, tempo, temperature, nb_tokens, bar_range], | |
outputs=[generated_music, generated_midi, info_message] | |
) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("## Examples") | |
gr.Examples( | |
examples=[["examples/Bach_847.mid", "", 120, 0.95, 512, "0-4"], | |
["examples/Bach_847.mid", "Cm C7/E Fm F#dim G7", 120, 0.95, 512, "0-4"], | |
["examples/Boney_m_ma_baker.mid", "", 120, 0.95, 512, "0-4"], | |
["examples/Eminem_slim_shady.mid", "Cm AbM BbM G7 Cm", 120, 0.95, 512, "0-4"], | |
["examples/Mozart_alla_turca.mid", "", 120, 0.95, 512, "0-4"], | |
["examples/Mozart_alla_turca.mid", "Am Em CM G7 E7 Am Am E7 Am", 120, 0.95, 512, "0-4"], | |
["examples/Daft_punk_Around_the_world.mid", "", 120, 0.95, 512, "0-4"], | |
], | |
inputs=[midi_file, chord_progression, tempo, temperature, nb_tokens, bar_range], | |
outputs=[generated_music, generated_midi, info_message], | |
fn=musiclang, | |
cache_examples=True, | |
) | |
demo.launch() | |