Spaces:
Runtime error
Runtime error
import math | |
import decord | |
from torch.nn import functional as F | |
import torch | |
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG'] | |
def is_image_file(filename): | |
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) | |
class DecordInit(object): | |
"""Using Decord(https://github.com/dmlc/decord) to initialize the video_reader.""" | |
def __init__(self, num_threads=1): | |
self.num_threads = num_threads | |
self.ctx = decord.cpu(0) | |
def __call__(self, filename): | |
"""Perform the Decord initialization. | |
Args: | |
results (dict): The resulting dict to be modified and passed | |
to the next transform in pipeline. | |
""" | |
reader = decord.VideoReader(filename, | |
ctx=self.ctx, | |
num_threads=self.num_threads) | |
return reader | |
def __repr__(self): | |
repr_str = (f'{self.__class__.__name__}(' | |
f'sr={self.sr},' | |
f'num_threads={self.num_threads})') | |
return repr_str | |
def pad_to_multiple(number, ds_stride): | |
remainder = number % ds_stride | |
if remainder == 0: | |
return number | |
else: | |
padding = ds_stride - remainder | |
return number + padding | |
class Collate: | |
def __init__(self, args): | |
self.max_image_size = args.max_image_size | |
self.ae_stride = args.ae_stride | |
self.ae_stride_t = args.ae_stride_t | |
self.patch_size = args.patch_size | |
self.patch_size_t = args.patch_size_t | |
self.num_frames = args.num_frames | |
def __call__(self, batch): | |
unzip = tuple(zip(*batch)) | |
if len(unzip) == 2: | |
batch_tubes, labels = unzip | |
labels = torch.as_tensor(labels).to(torch.long) | |
elif len(unzip) == 3: | |
batch_tubes, input_ids, cond_mask = unzip | |
input_ids = torch.stack(input_ids).squeeze(1) | |
cond_mask = torch.stack(cond_mask).squeeze(1) | |
else: | |
raise NotImplementedError | |
ds_stride = self.ae_stride * self.patch_size | |
t_ds_stride = self.ae_stride_t * self.patch_size_t | |
# pad to max multiple of ds_stride | |
batch_input_size = [i.shape for i in batch_tubes] | |
max_t, max_h, max_w = self.num_frames, \ | |
self.max_image_size, \ | |
self.max_image_size | |
pad_max_t, pad_max_h, pad_max_w = pad_to_multiple(max_t, t_ds_stride), \ | |
pad_to_multiple(max_h, ds_stride), \ | |
pad_to_multiple(max_w, ds_stride) | |
each_pad_t_h_w = [[pad_max_t - i.shape[1], | |
pad_max_h - i.shape[2], | |
pad_max_w - i.shape[3]] for i in batch_tubes] | |
pad_batch_tubes = [F.pad(im, | |
(0, pad_w, | |
0, pad_h, | |
0, pad_t), value=0) for (pad_t, pad_h, pad_w), im in zip(each_pad_t_h_w, batch_tubes)] | |
pad_batch_tubes = torch.stack(pad_batch_tubes, dim=0) | |
# make attention_mask | |
max_tube_size = [pad_max_t, pad_max_h, pad_max_w] | |
max_latent_size = [max_tube_size[0] // self.ae_stride_t, | |
max_tube_size[1] // self.ae_stride, | |
max_tube_size[2] // self.ae_stride] | |
max_patchify_latent_size = [max_latent_size[0] // self.patch_size_t, | |
max_latent_size[1] // self.patch_size, | |
max_latent_size[2] // self.patch_size] | |
valid_patchify_latent_size = [[int(math.ceil(i[1] / t_ds_stride)), | |
int(math.ceil(i[2] / ds_stride)), | |
int(math.ceil(i[3] / ds_stride))] for i in batch_input_size] | |
attention_mask = [F.pad(torch.ones(i), | |
(0, max_patchify_latent_size[2] - i[2], | |
0, max_patchify_latent_size[1] - i[1], | |
0, max_patchify_latent_size[0] - i[0]), value=0) for i in valid_patchify_latent_size] | |
attention_mask = torch.stack(attention_mask) | |
if len(unzip) == 2: | |
return pad_batch_tubes, labels, attention_mask | |
elif len(unzip) == 3: | |
return pad_batch_tubes, attention_mask, input_ids, cond_mask | |