Spaces:
Build error
Build error
Fix app
Browse files
a.ipynb
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import json\n",
|
| 10 |
+
"from pathlib import Path\n",
|
| 11 |
+
"\n",
|
| 12 |
+
"import gradio as gr\n",
|
| 13 |
+
"import pandas as pd"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"cell_type": "code",
|
| 18 |
+
"execution_count": 31,
|
| 19 |
+
"metadata": {},
|
| 20 |
+
"outputs": [],
|
| 21 |
+
"source": [
|
| 22 |
+
"def get_leaderboard_df():\n",
|
| 23 |
+
" filepaths = list(Path(\"eval_results\").rglob(\"*.json\"))\n",
|
| 24 |
+
"\n",
|
| 25 |
+
" # Parse filepaths to get unique models\n",
|
| 26 |
+
" models = set()\n",
|
| 27 |
+
" for filepath in filepaths:\n",
|
| 28 |
+
" path_parts = Path(filepath).parts\n",
|
| 29 |
+
" model_revision = \"_\".join(path_parts[1:4])\n",
|
| 30 |
+
" models.add(model_revision)\n",
|
| 31 |
+
"\n",
|
| 32 |
+
" # Initialize DataFrame\n",
|
| 33 |
+
" df = pd.DataFrame(index=list(models))\n",
|
| 34 |
+
"\n",
|
| 35 |
+
" # Extract data from each file and populate the DataFrame\n",
|
| 36 |
+
" for filepath in filepaths:\n",
|
| 37 |
+
" path_parts = Path(filepath).parts\n",
|
| 38 |
+
" model_revision = \"_\".join(path_parts[1:4])\n",
|
| 39 |
+
" task = path_parts[4].capitalize()\n",
|
| 40 |
+
" # Extract timestamp from filepath\n",
|
| 41 |
+
" timestamp = filepath.stem.split(\"_\")[-1][:-3]\n",
|
| 42 |
+
" df.loc[model_revision, \"Timestamp\"] = timestamp\n",
|
| 43 |
+
"\n",
|
| 44 |
+
" with open(filepath, \"r\") as file:\n",
|
| 45 |
+
" data = json.load(file)\n",
|
| 46 |
+
" first_result_key = next(iter(data[\"results\"])) # gets the first key in 'results'\n",
|
| 47 |
+
" # TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard\n",
|
| 48 |
+
" if task == \"truthfulqa\":\n",
|
| 49 |
+
" value = data[\"results\"][first_result_key][\"truthfulqa_mc2\"]\n",
|
| 50 |
+
" else:\n",
|
| 51 |
+
" first_metric_key = next(iter(data[\"results\"][first_result_key])) # gets the first key in the first result\n",
|
| 52 |
+
" value = data[\"results\"][first_result_key][first_metric_key] # gets the value of the first metric\n",
|
| 53 |
+
" df.loc[model_revision, task] = value\n",
|
| 54 |
+
" \n",
|
| 55 |
+
" df.insert(loc=0, column=\"Average\", value=df.mean(axis=1, numeric_only=True))\n",
|
| 56 |
+
" df = df.sort_values(by=[\"Average\"], ascending=False)\n",
|
| 57 |
+
" df = df.reset_index().rename(columns={\"index\": \"Model\"}).round(3)\n",
|
| 58 |
+
" return df"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"execution_count": 32,
|
| 64 |
+
"metadata": {},
|
| 65 |
+
"outputs": [],
|
| 66 |
+
"source": [
|
| 67 |
+
"df = get_leaderboard_df()"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "code",
|
| 72 |
+
"execution_count": null,
|
| 73 |
+
"metadata": {},
|
| 74 |
+
"outputs": [
|
| 75 |
+
{
|
| 76 |
+
"data": {
|
| 77 |
+
"text/html": [
|
| 78 |
+
"<div>\n",
|
| 79 |
+
"<style scoped>\n",
|
| 80 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 81 |
+
" vertical-align: middle;\n",
|
| 82 |
+
" }\n",
|
| 83 |
+
"\n",
|
| 84 |
+
" .dataframe tbody tr th {\n",
|
| 85 |
+
" vertical-align: top;\n",
|
| 86 |
+
" }\n",
|
| 87 |
+
"\n",
|
| 88 |
+
" .dataframe thead th {\n",
|
| 89 |
+
" text-align: right;\n",
|
| 90 |
+
" }\n",
|
| 91 |
+
"</style>\n",
|
| 92 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 93 |
+
" <thead>\n",
|
| 94 |
+
" <tr style=\"text-align: right;\">\n",
|
| 95 |
+
" <th></th>\n",
|
| 96 |
+
" <th>Model</th>\n",
|
| 97 |
+
" <th>Timestamp</th>\n",
|
| 98 |
+
" <th>Average</th>\n",
|
| 99 |
+
" <th>Truthfulqa</th>\n",
|
| 100 |
+
" <th>Winogrande</th>\n",
|
| 101 |
+
" <th>Gsm8k</th>\n",
|
| 102 |
+
" <th>Hellaswag</th>\n",
|
| 103 |
+
" <th>Arc</th>\n",
|
| 104 |
+
" </tr>\n",
|
| 105 |
+
" </thead>\n",
|
| 106 |
+
" <tbody>\n",
|
| 107 |
+
" <tr>\n",
|
| 108 |
+
" <th>0</th>\n",
|
| 109 |
+
" <td>Qwen_Qwen1.5-0.5B-Chat_main</td>\n",
|
| 110 |
+
" <td>2024-02-28T07-35-58.803</td>\n",
|
| 111 |
+
" <td>0.296</td>\n",
|
| 112 |
+
" <td>0.271</td>\n",
|
| 113 |
+
" <td>0.519</td>\n",
|
| 114 |
+
" <td>0.039</td>\n",
|
| 115 |
+
" <td>0.363</td>\n",
|
| 116 |
+
" <td>0.287</td>\n",
|
| 117 |
+
" </tr>\n",
|
| 118 |
+
" </tbody>\n",
|
| 119 |
+
"</table>\n",
|
| 120 |
+
"</div>"
|
| 121 |
+
],
|
| 122 |
+
"text/plain": [
|
| 123 |
+
" Model Timestamp Average Truthfulqa \\\n",
|
| 124 |
+
"0 Qwen_Qwen1.5-0.5B-Chat_main 2024-02-28T07-35-58.803 0.296 0.271 \n",
|
| 125 |
+
"\n",
|
| 126 |
+
" Winogrande Gsm8k Hellaswag Arc \n",
|
| 127 |
+
"0 0.519 0.039 0.363 0.287 "
|
| 128 |
+
]
|
| 129 |
+
},
|
| 130 |
+
"execution_count": 28,
|
| 131 |
+
"metadata": {},
|
| 132 |
+
"output_type": "execute_result"
|
| 133 |
+
}
|
| 134 |
+
],
|
| 135 |
+
"source": [
|
| 136 |
+
"df"
|
| 137 |
+
]
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"cell_type": "code",
|
| 141 |
+
"execution_count": null,
|
| 142 |
+
"metadata": {},
|
| 143 |
+
"outputs": [],
|
| 144 |
+
"source": []
|
| 145 |
+
}
|
| 146 |
+
],
|
| 147 |
+
"metadata": {
|
| 148 |
+
"kernelspec": {
|
| 149 |
+
"display_name": "hf",
|
| 150 |
+
"language": "python",
|
| 151 |
+
"name": "python3"
|
| 152 |
+
},
|
| 153 |
+
"language_info": {
|
| 154 |
+
"codemirror_mode": {
|
| 155 |
+
"name": "ipython",
|
| 156 |
+
"version": 3
|
| 157 |
+
},
|
| 158 |
+
"file_extension": ".py",
|
| 159 |
+
"mimetype": "text/x-python",
|
| 160 |
+
"name": "python",
|
| 161 |
+
"nbconvert_exporter": "python",
|
| 162 |
+
"pygments_lexer": "ipython3",
|
| 163 |
+
"version": "3.10.6"
|
| 164 |
+
}
|
| 165 |
+
},
|
| 166 |
+
"nbformat": 4,
|
| 167 |
+
"nbformat_minor": 2
|
| 168 |
+
}
|
app.py
CHANGED
|
@@ -7,7 +7,7 @@ import pandas as pd
|
|
| 7 |
TITLE = """<h1 align="center" id="space-title">LLM Leaderboard for H4 Models</h1>"""
|
| 8 |
|
| 9 |
DESCRIPTION = f"""
|
| 10 |
-
Evaluation of H4 models across a diverse range of benchmarks from
|
| 11 |
"""
|
| 12 |
|
| 13 |
|
|
@@ -18,7 +18,7 @@ def get_leaderboard_df():
|
|
| 18 |
models = set()
|
| 19 |
for filepath in filepaths:
|
| 20 |
path_parts = Path(filepath).parts
|
| 21 |
-
model_revision = "_".join(path_parts[1:4])
|
| 22 |
models.add(model_revision)
|
| 23 |
|
| 24 |
# Initialize DataFrame
|
|
@@ -27,17 +27,26 @@ def get_leaderboard_df():
|
|
| 27 |
# Extract data from each file and populate the DataFrame
|
| 28 |
for filepath in filepaths:
|
| 29 |
path_parts = Path(filepath).parts
|
| 30 |
-
model_revision = "_".join(path_parts[1:4])
|
| 31 |
-
task =
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
with open(filepath, "r") as file:
|
| 34 |
data = json.load(file)
|
| 35 |
first_result_key = next(iter(data["results"])) # gets the first key in 'results'
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
df.loc[model_revision, task] = value
|
| 39 |
|
| 40 |
-
df.insert(loc=
|
| 41 |
df = df.sort_values(by=["Average"], ascending=False)
|
| 42 |
df = df.reset_index().rename(columns={"index": "Model"}).round(3)
|
| 43 |
return df
|
|
|
|
| 7 |
TITLE = """<h1 align="center" id="space-title">LLM Leaderboard for H4 Models</h1>"""
|
| 8 |
|
| 9 |
DESCRIPTION = f"""
|
| 10 |
+
Evaluation of H4 models across a diverse range of benchmarks from [LightEval](https://github.com/huggingface/lighteval)
|
| 11 |
"""
|
| 12 |
|
| 13 |
|
|
|
|
| 18 |
models = set()
|
| 19 |
for filepath in filepaths:
|
| 20 |
path_parts = Path(filepath).parts
|
| 21 |
+
model_revision = "_".join(path_parts[1:4])
|
| 22 |
models.add(model_revision)
|
| 23 |
|
| 24 |
# Initialize DataFrame
|
|
|
|
| 27 |
# Extract data from each file and populate the DataFrame
|
| 28 |
for filepath in filepaths:
|
| 29 |
path_parts = Path(filepath).parts
|
| 30 |
+
model_revision = "_".join(path_parts[1:4])
|
| 31 |
+
task = path_parts[4].capitalize()
|
| 32 |
+
# Extract timestamp from filepath
|
| 33 |
+
timestamp = filepath.stem.split("_")[-1][:-3]
|
| 34 |
+
df.loc[model_revision, "Timestamp"] = timestamp
|
| 35 |
|
| 36 |
with open(filepath, "r") as file:
|
| 37 |
data = json.load(file)
|
| 38 |
first_result_key = next(iter(data["results"])) # gets the first key in 'results'
|
| 39 |
+
# TruthfulQA has two metrics, so we need to pick the `mc2` one that's reported on the leaderboard
|
| 40 |
+
if task == "truthfulqa":
|
| 41 |
+
value = data["results"][first_result_key]["truthfulqa_mc2"]
|
| 42 |
+
else:
|
| 43 |
+
first_metric_key = next(
|
| 44 |
+
iter(data["results"][first_result_key])
|
| 45 |
+
) # gets the first key in the first result
|
| 46 |
+
value = data["results"][first_result_key][first_metric_key] # gets the value of the first metric
|
| 47 |
df.loc[model_revision, task] = value
|
| 48 |
|
| 49 |
+
df.insert(loc=1, column="Average", value=df.mean(axis=1, numeric_only=True))
|
| 50 |
df = df.sort_values(by=["Average"], ascending=False)
|
| 51 |
df = df.reset_index().rename(columns={"index": "Model"}).round(3)
|
| 52 |
return df
|