mikesapi's picture
minor
e27441b
raw
history blame
6.39 kB
import logging
import tiktoken
from transformers import AutoTokenizer
import gradio as gr
logger = logging.getLogger(__name__) # noqa
def load_test_phrases(filename):
with open(f"./data/{filename}", "r", encoding="utf-8") as file:
return file.read().splitlines()
models = ["Xenova/claude-tokenizer", # Anthropic
"meta-llama/Llama-2-7b-chat-hf", # LLAMA-2
"beomi/llama-2-ko-7b", # LLAMA-2-ko
"ai4bharat/Airavata", # ARIVATA
"openaccess-ai-collective/tiny-mistral", # Mistral
"gpt-3.5-turbo", # GPT3.5
"meta-llama/Meta-Llama-3-8B-Instruct", # LLAMA-3
"CohereForAI/aya-23-8B", # AYA
"google/gemma-1.1-2b-it", # GEMMA
"gpt-4o", # GPT4o
"TWO/sutra-mlt256-v2"] # SUTRA
test_phrase_set = [
"I am going for a walk later today",
"நாங்கள் சந்திரனுக்கு ராக்கெட் பயணத்தில் இருக்கிறோம்",
"양자 중성자 산란이란 무엇입니까?", # Korean
"मुझे पाँच वाक्यों में न्यूट्रॉन प्रकीर्णन की व्याख्या दीजिए", # Hindi
"mujhe paanch vaakyon mein nyootron prakeernan kee vyaakhya deejie",
"আমাকে পাঁচটি বাক্যে নিউট্রন বিচ্ছুরণের একটি ব্যাখ্যা দিন", # Bengali/Bangla
"Amake pamcati bakye ni'utrana bicchuranera ekati byakhya dina",
"મને પાંચ વાક્યોમાં ન્યુટ્રોન સ્કેટરિંગની સમજૂતી આપો", # Gujarati
"Mane panca vakyomam n'yutrona sketaringani samajuti apo",
"நியூட்ரான் சிதறல் பற்றிய விளக்கத்தை ஐந்து வாக்கியங்களில் கொடுங்கள்", # Tamil
"Niyutran citaral parriya vilakkattai aintu vakkiyankalil kotunkal",
"मला पाच वाक्यात न्यूट्रॉन स्कॅटरिंगचे स्पष्टीकरण द्या", # Marathi
"ఐదు వాక్యాలలో న్యూట్రాన్ స్కాటరింగ్ గురించి నాకు వివరణ ఇవ్వండి", # Telugu
]
test_phrase_set_long_1 = load_test_phrases('multilingualphrases01.txt')
test_phrase_set_long_2 = load_test_phrases('multilingualphrases02.txt')
test_phrase_set_long_3 = load_test_phrases('multilingualphrases03.txt')
def generate_tokens_as_table(text):
table = []
for model in models:
if 'gpt' not in model:
tokenizer = AutoTokenizer.from_pretrained(model)
tokens = tokenizer.encode(text, add_special_tokens=False)
else:
tokenizer = tiktoken.encoding_for_model(model)
tokens = tokenizer.encode(text)
decoded = [tokenizer.decode([t]) for t in tokens]
table.append([model] + decoded)
return table
def generate_tokenizer_table(text):
if not text:
return []
token_counts = {model: 0 for model in models}
vocab_size = {model: 0 for model in models}
for model in models:
if 'gpt' not in model:
tokenizer = AutoTokenizer.from_pretrained(model)
vocab_size[model] = tokenizer.vocab_size
else:
tokenizer = tiktoken.encoding_for_model(model)
vocab_size[model] = tokenizer.n_vocab
token_counts[model] += len(tokenizer.encode(text))
word_count = len(text.split(' '))
output = []
for m in models:
row = [m, vocab_size[m], word_count, token_counts[m], f"{token_counts[m] / word_count:0.2f}"]
output.append(row)
return output
def generate_split_token_table(text):
if not text:
return gr.Dataframe()
table = generate_tokenizer_table(text)
return gr.Dataframe(
table,
headers=['tokenizer', 'v size', '#word', '#token', '#tokens/word'],
datatype=["str", "number", "str"],
row_count=len(models),
col_count=(5, "fixed"),
)
with gr.Blocks() as sutra_token_count:
gr.Markdown(
"""
# SUTRA Multilingual Tokenizer Specs & Stats.
## Tokenize paragraphs in multiple languages and compare token counts.
""")
textbox = gr.Textbox(label="Input Text")
submit_button = gr.Button("Submit")
output = gr.Dataframe()
examples = [
[' '.join(test_phrase_set_long_1)],
[' '.join(test_phrase_set_long_2)],
[' '.join(test_phrase_set_long_3)],
]
gr.Examples(examples=examples, inputs=[textbox])
submit_button.click(generate_split_token_table, inputs=[textbox], outputs=[output])
def generate_tokens_table(text):
table = generate_tokens_as_table(text)
cols = len(table[0])
return gr.Dataframe(
table,
headers=['model'] + [str(i) for i in range(cols - 1)],
row_count=2,
col_count=(cols, "fixed"),
)
with gr.Blocks() as sutra_tokenize:
gr.Markdown(
"""
# SUTRA Multilingual Tokenizer Sentence Inspector.
## Tokenize a sentence with various tokenizers and inspect how it's broken down.
""")
textbox = gr.Textbox(label="Input Text")
submit_button = gr.Button("Submit")
output = gr.Dataframe()
examples = test_phrase_set
gr.Examples(examples=examples, inputs=[textbox])
submit_button.click(generate_tokens_table, inputs=[textbox], outputs=[output])
if __name__ == '__main__':
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Row():
gr.Markdown(
"""
## <img src="https://playground.two.ai/sutra.svg" height="20"/>
"""
)
with gr.Row():
gr.TabbedInterface(
interface_list=[sutra_tokenize, sutra_token_count],
tab_names=["Tokenize Text", "Tokenize Paragraphs"]
)
demo.queue(default_concurrency_limit=5).launch(
server_name="0.0.0.0",
allowed_paths=["/"],
)