Spaces:
Sleeping
Sleeping
import gradio as gr # type: ignore | |
from utils import generate_audio_response, generate_text_response, set_user_response, transcribe_audio, personality_app, create_line_plot, predict_personality | |
from huggingface_hub import login # type: ignore | |
import os | |
# Function to handle audio input and update chatbot | |
def handle_audio_input(audio_file_path, chat_history): | |
if audio_file_path is not None: | |
# Transcribe the audio | |
output = transcribe_audio(audio_file_path) | |
personality_scores=personality_app(output) | |
# Update the chat history with the transcription | |
_, chat_history = set_user_response(output, chat_history) | |
return output, chat_history, personality_scores | |
return None, chat_history, None | |
def clear_audio(): | |
return None | |
def hide_textbox(): | |
return gr.Textbox(visible=False) | |
def open_textbox(): | |
return gr.Textbox(visible=True) | |
# Function to handle the model selection | |
def update_selected_model(selected_model): | |
print(f"Selected model: {selected_model}") | |
return selected_model | |
with gr.Blocks() as demo: | |
gr.Markdown("<center><h1>Multimodal Personality Adaptive Conversational AI</h1></center>") | |
gr.Markdown("<center><h5>Personality Adaptive AI This application uses LLMs to create a personality adaptive conversational AI that interacts with users and displays personality scores. (Description with links goes here)</h5></center>") | |
with gr.Row(): | |
with gr.Column(scale=6): | |
# Audio recording component | |
audio_input = gr.Microphone(sources=["microphone"], type="filepath", label="Tell Me How You're Feeling", container=True, interactive=True) | |
output_text = gr.Textbox(label="Transcription", placeholder="What you said appears here..") | |
chatbot = gr.Chatbot(label="Carebot", height=450) #Chatbot interface | |
msg = gr.Textbox(label="Type your message here:") # Textbox for user input | |
# with gr.Group(): | |
with gr.Row(): | |
Run = gr.Button("Run",variant="primary", size="sm") | |
clear = gr.ClearButton(size="sm") #To clear the chat | |
# generate = gr.Button("Generate", size="sm") | |
# save_chat = gr.Button("Save", size="sm") | |
# Display some query examples | |
examples = gr.Examples(examples=["I'm feeling Sad all the time", "Tell me a joke.", "Cheer Me Up!", "Tell me about Seattle"], inputs=msg) | |
#Clear the message | |
clear.click(lambda: None, None, chatbot, queue=False) | |
# Right side - Information, Visualization, and Dropdown | |
with gr.Column(scale=4): | |
# 1st component - Dropdown to choose models | |
model_selection = gr.Dropdown( | |
["Llama-2-7b-chat-Counsel-finetuned", "Llama-3-8B", "gpt-4", "gpt-3.5-turbo"], label="Models", info="Choose your LLM model", value="Llama-2-7b-chat-Counsel-finetuned") | |
# Textbox to display the selected model | |
selected_model = gr.Textbox(label="Selected Model", interactive=False, visible=False) # not displayed in the app | |
model_selection.change(fn=update_selected_model, inputs=model_selection, outputs=selected_model) | |
# 2nd component - Live Personality Score Visualization | |
personality_score = gr.LinePlot(x="Personality", y="Score",label="Personality Scores", height=300) | |
#Generate responses to the user's audio query | |
if audio_input is not None and output_text != None: | |
gr.on(audio_input.change, fn=handle_audio_input, inputs=[audio_input, chatbot], outputs=[output_text, chatbot, personality_score], queue=False).then(fn=generate_audio_response, inputs=[chatbot,selected_model], outputs=chatbot) | |
audio_input.change(clear_audio, inputs=None, outputs=audio_input) | |
pass | |
if msg is not None: | |
# Submit the response to LLM | |
gr.on(triggers=[msg.submit, Run.click],fn=personality_app, inputs=msg, outputs=personality_score).then(fn=set_user_response, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(fn=generate_text_response, inputs=[chatbot, selected_model], outputs=chatbot) | |
# Launch the Gradio app | |
demo.queue() | |
if __name__ == '__main__': | |
login(token = os.getenv("HF_TOKEN")) # HF Login | |
demo.launch() |