TRaw's picture
Upload 297 files
3d3d712
import hashlib
import json
import os
import random
import time
from dataclasses import dataclass
from typing import Any, Dict, Generator, List, Literal, Optional
import yaml
from injector import inject
from taskweaver.llm.util import ChatMessageRoleType, ChatMessageType, format_chat_message
from .base import CompletionService, EmbeddingService, LLMServiceConfig
MockServiceModeType = Literal[
"fixed",
"record_only",
"playback_only",
"playback_or_record",
]
class MockApiServiceConfig(LLMServiceConfig):
def _configure(self) -> None:
self._set_name("mock")
mock_mode = self._get_enum(
"mode",
options=["fixed", "record_only", "playback_only", "playback_or_record"],
default="playback_or_record",
)
assert mock_mode in [
"fixed",
"record_only",
"playback_only",
"playback_or_record",
]
self.mode: MockServiceModeType = mock_mode # type: ignore
self.fixed_chat_responses: str = self._get_str(
"fixed_chat_responses",
json.dumps(format_chat_message("assistant", "Hello!")),
)
self.fixed_embedding_responses: str = self._get_str(
"fixed_embedding_responses",
json.dumps([[0.0] * 64]),
)
self.cache_path: str = self._get_path(
"cache_path",
os.path.join(self.src.app_base_path, "cache", "mock.yaml"),
)
# split the chat completion response into chunks and delay each chunk by this amount
# if negative, return the whole response at once
self.playback_delay: float = self._get_float(
"playback_delay",
0.05,
)
@dataclass
class MockCacheEntry:
value: str
query: str
created_at: float
last_accessed_at: float
class MockCacheStore:
def __init__(self, path: str):
self.path = path
self.completion_store: Dict[str, MockCacheEntry] = {}
self.embedding_store: Dict[str, MockCacheEntry] = {}
if os.path.exists(self.path):
self._init_from_disk()
def get_completion(self, query: List[ChatMessageType]) -> Optional[ChatMessageType]:
serialized_query = self._serialize_completion_query(query)
serialized_value = self._get_from_store(self.completion_store, serialized_query)
if serialized_value is None:
return None
return self._deserialize_completion_response(serialized_value)
def get_embedding(self, query: str) -> Optional[List[float]]:
serialized_query = self._serialize_embedding_query(query)
serialized_value = self._get_from_store(self.embedding_store, serialized_query)
if serialized_value is None:
return None
return self._deserialize_embedding_response(serialized_value)
def _get_from_store(
self,
store: Dict[str, MockCacheEntry],
query: str,
) -> Optional[str]:
key = self._query_to_key(query)
if key in store:
entry = store[key]
entry.last_accessed_at = time.time()
return entry.value
return None
def set_completion(
self,
query: List[ChatMessageType],
value: ChatMessageType,
) -> None:
serialized_query = self._serialize_completion_query(query)
serialized_value = self._serialize_completion_response(value)
self._set_to_store(self.completion_store, serialized_query, serialized_value)
def set_embedding(self, query: str, value: List[float]) -> None:
serialized_query = self._serialize_embedding_query(query)
serialized_value = self._serialize_embedding_response(value)
self._set_to_store(self.embedding_store, serialized_query, serialized_value)
def _set_to_store(
self,
store: Dict[str, MockCacheEntry],
query: str,
value: str,
) -> None:
key = self._query_to_key(query)
store[key] = MockCacheEntry(
value=value,
query=query,
created_at=time.time(),
last_accessed_at=time.time(),
)
self._save_to_disk()
def _serialize_completion_query(self, query: List[ChatMessageType]) -> str:
return "\n".join([self._serialize_completion_response(x) for x in query])
def _serialize_completion_response(self, response: ChatMessageType) -> str:
return f"{response['role']}:{response['content']}"
def _deserialize_completion_response(self, response: str) -> ChatMessageType:
segment = response.split(":", 1)
role = segment[0] if len(segment) > 0 else "assistant"
if role not in ["assistant", "user", "system"]:
raise ValueError(f"Invalid role {role}")
content = segment[1] if len(segment) > 1 else ""
return format_chat_message(role, content) # type: ignore
def _serialize_embedding_query(self, query: str) -> str:
return query
def _serialize_embedding_response(self, response: List[float]) -> str:
return ",".join([str(x) for x in response])
def _deserialize_embedding_response(self, response: str) -> List[float]:
return [float(x) for x in response.split(",")]
def _query_to_key(self, query: str) -> str:
return hashlib.md5(query.encode("utf-8")).hexdigest()
def _init_from_disk(self):
try:
cache = yaml.safe_load(open(self.path, "r"))
except Exception as e:
print(f"Error loading cache file {self.path}: {e}")
return
try:
completion_store = cache["completion_store"]
for key, value in completion_store.items():
try:
self.completion_store[key] = MockCacheEntry(**value)
except Exception as e:
print(f"Error loading cache entry {key}: {e}")
except Exception as e:
print(f"Error loading completion store: {e}")
try:
embedding_store = cache["embedding_store"]
for key, value in embedding_store.items():
try:
self.embedding_store[key] = MockCacheEntry(**value)
except Exception as e:
print(f"Error loading cache entry {key}: {e}")
except Exception as e:
print(f"Error loading embedding store: {e}")
def _save_to_disk(self):
# TODO: postpone immediate update and periodically save to disk
try:
yaml.safe_dump(
{
"completion_store": {k: v.__dict__ for k, v in self.completion_store.items()},
"embedding_store": {k: v.__dict__ for k, v in self.embedding_store.items()},
},
open(self.path, "w"),
)
except Exception as e:
print(f"Error saving cache file {self.path}: {e}")
class MockApiService(CompletionService, EmbeddingService):
@inject
def __init__(self, config: MockApiServiceConfig):
self.config = config
self.base_completion_service: Optional[CompletionService] = None
self.base_embedding_service: Optional[EmbeddingService] = None
self.cache = MockCacheStore(self.config.cache_path)
def set_base_completion_service(
self,
base_completion_service: Optional[CompletionService],
):
self.base_completion_service = base_completion_service
def set_base_embedding_service(
self,
base_embedding_service: Optional[EmbeddingService],
):
self.base_embedding_service = base_embedding_service
def chat_completion(
self,
messages: List[ChatMessageType],
use_backup_engine: bool = False,
stream: bool = True,
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
top_p: Optional[float] = None,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Generator[ChatMessageType, None, None]:
if self.config.mode == "fixed":
return self._get_from_fixed_completion()
cached_value = self.cache.get_completion(messages)
# playback
if cached_value is None:
if self.config.mode == "playback_only":
raise Exception("No cached value found")
else:
if self.config.mode != "record_only":
return self._get_from_playback_completion(cached_value)
# record
def get_from_base() -> Generator[ChatMessageType, None, None]:
if self.base_completion_service is None:
raise Exception("base_completion_service is not set")
new_value = format_chat_message("assistant", "")
for chunk in self.base_completion_service.chat_completion(
messages,
use_backup_engine,
stream,
temperature,
max_tokens,
top_p,
stop,
**kwargs,
):
new_value["role"] = chunk["role"]
new_value["content"] += chunk["content"]
yield chunk
self.cache.set_completion(messages, new_value)
return get_from_base()
def get_embeddings(self, strings: List[str]) -> List[List[float]]:
if self.config.mode == "fixed":
return [self._get_from_fixed_embedding() for _ in strings]
cached_values = [self.cache.get_embedding(x) for x in strings]
cache_missed_values = [strings[i] for i, v in enumerate(cached_values) if v is None]
if len(cache_missed_values) > 0:
if self.config.mode == "playback_only":
raise Exception("Not all cached values found")
if self.base_embedding_service is None:
raise Exception("base_embedding_service is not set")
new_values = self.base_embedding_service.get_embeddings(cache_missed_values)
cache_missed_values_index = 0
result_values: List[List[float]] = []
for i, v in enumerate(cached_values):
if v is None:
self.cache.set_embedding(
strings[i],
new_values[cache_missed_values_index],
)
result_values.append(new_values[cache_missed_values_index])
cache_missed_values_index += 1
else:
result_values.append(v)
return result_values
def _get_from_fixed_completion(
self,
) -> Generator[ChatMessageType, None, None]:
fixed_responses: ChatMessageType = json.loads(
self.config.fixed_chat_responses,
)
return self._get_from_playback_completion(fixed_responses)
def _get_from_fixed_embedding(
self,
) -> List[float]:
fixed_responses: List[float] = json.loads(self.config.fixed_embedding_responses)
return fixed_responses
def _get_from_playback_completion(
self,
cached_value: ChatMessageType,
) -> Generator[ChatMessageType, None, None]:
if self.config.playback_delay < 0:
yield cached_value
return
role: ChatMessageRoleType = cached_value["role"] # type: ignore
content = cached_value["content"]
cur_pos = 0
while cur_pos < len(content):
chunk_size = random.randint(3, 20)
next_pos = min(cur_pos + chunk_size, len(content))
yield format_chat_message(role, content[cur_pos:next_pos])
cur_pos = next_pos
time.sleep(self.config.playback_delay)