|
name: anomaly_detection |
|
enabled: true |
|
required: false |
|
description: >- |
|
anomaly_detection function identifies anomalies from an input DataFrame of |
|
time series. It will add a new column "Is_Anomaly", where each entry will be marked with "True" if the value is an anomaly or "False" otherwise. |
|
For example, result_df, description = anomaly_detection(df, "datetime", "value"). |
|
|
|
parameters: |
|
- name: df |
|
type: DataFrame |
|
required: true |
|
description: >- |
|
the input data from which we can identify the anomalies with the 3-sigma |
|
algorithm. |
|
- name: time_col_name |
|
type: str |
|
required: true |
|
description: name of the column that contains the datetime |
|
- name: value_col_name |
|
type: str |
|
required: true |
|
description: name of the column that contains the numeric values. |
|
|
|
returns: |
|
- name: df |
|
type: DataFrame |
|
description: >- |
|
This DataFrame extends the input DataFrame with a newly-added column |
|
"Is_Anomaly" containing the anomaly detection result. |
|
- name: description |
|
type: str |
|
description: This is a string describing the anomaly detection results. |
|
|