|
import os |
|
import time |
|
import requests |
|
import random |
|
import json |
|
import base64 |
|
from io import BytesIO |
|
from PIL import Image |
|
|
|
|
|
class Prodia: |
|
def __init__(self, api_key, base=None): |
|
self.base = base or "https://api.prodia.com/v1" |
|
self.headers = { |
|
"X-Prodia-Key": api_key |
|
} |
|
|
|
def sd_controlnet(self, params): |
|
response = self._post(f"{self.base}/sd/controlnet", params) |
|
return response.json() |
|
|
|
def sd_transform(self, params): |
|
response = self._post(f"{self.base}/sd/transform", params) |
|
return response.json() |
|
|
|
def sd_generate(self, params): |
|
response = self._post(f"{self.base}/sd/generate", params) |
|
return response.json() |
|
|
|
def sdxl_generate(self, params): |
|
response = self._post(f"{self.base}/sdxl/generate", params) |
|
return response.json() |
|
|
|
def upscale_image(self, params): |
|
response = self._post(f"{self.base}/upscale", params) |
|
return response.json() |
|
|
|
def get_job(self, job_id): |
|
response = self._get(f"{self.base}/job/{job_id}") |
|
return response.json() |
|
|
|
def wait(self, job): |
|
job_result = job |
|
|
|
while job_result['status'] not in ['succeeded', 'failed']: |
|
time.sleep(0.25) |
|
job_result = self.get_job(job['job']) |
|
|
|
if job_result['status'] == 'failed': |
|
raise Exception("Job failed") |
|
|
|
return job_result |
|
|
|
def upload(self, file): |
|
files = {'file': open(file, 'rb')} |
|
img_id = requests.post(os.getenv("IMAGES_1"), files=files).json()['id'] |
|
|
|
payload = { |
|
"content": "", |
|
"nonce": f"{random.randint(1, 10000000)}H9X42KSEJFNNH", |
|
"replies": [], |
|
"attachments": |
|
[img_id] |
|
} |
|
resp = requests.post(os.getenv("IMAGES_2"), json=payload, headers={"x-session-token": os.getenv("session-token")}) |
|
return f"{os.getenv('IMAGES_1')}/{img_id}/{resp.json()['attachments'][0]['filename']}" |
|
|
|
def list_models(self): |
|
response = self._get(f"{self.base}/models/list") |
|
return response.json() |
|
|
|
def _post(self, url, params): |
|
headers = { |
|
**self.headers, |
|
"Content-Type": "application/json" |
|
} |
|
response = requests.post(url, headers=headers, data=json.dumps(params)) |
|
|
|
if response.status_code != 200: |
|
raise Exception(f"Bad Prodia Response: {response.status_code}") |
|
|
|
return response |
|
|
|
def _get(self, url): |
|
response = requests.get(url, headers=self.headers) |
|
|
|
if response.status_code != 200: |
|
raise Exception(f"Bad Prodia Response: {response.status_code}") |
|
|
|
return response |
|
|
|
|
|
def image_to_base64(image_path): |
|
|
|
with Image.open(image_path) as image: |
|
|
|
buffered = BytesIO() |
|
image.save(buffered, format="PNG") |
|
|
|
|
|
img_str = base64.b64encode(buffered.getvalue()) |
|
|
|
return img_str.decode('utf-8') |
|
|
|
|
|
prodia_client = Prodia(api_key=os.getenv("PRODIA_X_KEY")) |
|
|
|
|
|
def generate_sdxl(prompt, negative_prompt, model, steps, sampler, cfg_scale, seed): |
|
result = prodia_client.sdxl_generate({ |
|
"prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"model": model, |
|
"steps": steps, |
|
"sampler": sampler, |
|
"cfg_scale": cfg_scale, |
|
"seed": seed |
|
}) |
|
|
|
job = prodia_client.wait(result) |
|
|
|
return job["imageUrl"] |
|
|
|
|
|
def generate_sd(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, upscale): |
|
result = prodia_client.sd_generate({ |
|
"prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"model": model, |
|
"steps": steps, |
|
"sampler": sampler, |
|
"cfg_scale": cfg_scale, |
|
"seed": seed, |
|
"upscale": upscale, |
|
"width": width, |
|
"height": height |
|
}) |
|
|
|
job = prodia_client.wait(result) |
|
|
|
return job["imageUrl"] |
|
|
|
|
|
def transform_sd(image, model, prompt, denoising_strength, negative_prompt, steps, cfg_scale, seed, upscale, sampler): |
|
image_url = prodia_client.upload(image) |
|
result = prodia_client.sd_transform({ |
|
"imageUrl": image_url, |
|
'model': model, |
|
'prompt': prompt, |
|
'denoising_strength': denoising_strength, |
|
'negative_prompt': negative_prompt, |
|
'steps': steps, |
|
'cfg_scale': cfg_scale, |
|
'seed': seed, |
|
'upscale': upscale, |
|
'sampler': sampler |
|
}) |
|
|
|
job = prodia_client.wait(result) |
|
|
|
return job["imageUrl"] |
|
|
|
|
|
def controlnet_sd(image, controlnet_model, controlnet_module, threshold_a, threshold_b, resize_mode, prompt, negative_prompt, steps, cfg_scale, seed, sampler, width, height): |
|
image_url = prodia_client.upload(image) |
|
result = prodia_client.sd_transform({ |
|
"imageUrl": image_url, |
|
"controlnet_model": controlnet_model, |
|
"controlnet_module": controlnet_module, |
|
"threshold_a": threshold_a, |
|
"threshold_b": threshold_b, |
|
"resize_mode": int(resize_mode), |
|
"prompt": prompt, |
|
'negative_prompt': negative_prompt, |
|
'steps': steps, |
|
'cfg_scale': cfg_scale, |
|
'seed': seed, |
|
'sampler': sampler, |
|
"height": height, |
|
"width": width |
|
}) |
|
|
|
job = prodia_client.wait(result) |
|
|
|
return job["imageUrl"] |
|
|
|
def image_upscale(image, scale_by): |
|
image_url = prodia_client.upload(image) |
|
result = prodia_client.upscale_image({ |
|
'imageUrl': image_url, |
|
'resize': int(scale_by) |
|
}) |
|
|
|
job = prodia_client.wait(result) |
|
|
|
return job["imageUrl"] |
|
|
|
def get_models(): |
|
return prodia_client.list_models() |
|
|