TRIT0N commited on
Commit
a1416ea
1 Parent(s): 9c5e751

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -6
app.py CHANGED
@@ -3,8 +3,10 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
-
 
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
@@ -12,10 +14,12 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-100h", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
 
 
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
@@ -28,7 +32,8 @@ def translate(audio):
28
 
29
  def synthesise(text):
30
  inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
32
  return speech.cpu()
33
 
34
 
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ #from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
+ from transformers import pipeline
8
+ from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
9
+ from transformers import BarkModel, BarkProcessor
10
 
11
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
 
 
14
  asr_pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-100h", device=device)
15
 
16
  # load text-to-speech checkpoint and speaker embeddings
17
+ #processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
18
+ #model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
19
+ #vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
20
 
21
+ model = BarkModel.from_pretrained("suno/bark-small")
22
+ processor = BarkProcessor.from_pretrained("suno/bark-small")
23
 
24
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
25
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
 
32
 
33
  def synthesise(text):
34
  inputs = processor(text=text, return_tensors="pt")
35
+ #speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
36
+ speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device))
37
  return speech.cpu()
38
 
39