jmercat's picture
Removed history to avoid any unverified information being released
5769ee4
import os
from mmcv import Config
import matplotlib.pyplot as plt
import numpy as np
from pytorch_lightning.utilities.seed import seed_everything
import torch
from risk_biased.scene_dataset.scene import RandomScene, RandomSceneParams
from risk_biased.scene_dataset.scene_plotter import ScenePlotter
from risk_biased.utils.cost import (
DistanceCostTorch,
DistanceCostParams,
TTCCostTorch,
TTCCostParams,
)
from risk_biased.utils.load_model import load_from_config
if __name__ == "__main__":
working_dir = os.path.dirname(os.path.realpath(__file__))
config_path = os.path.join(
working_dir, "..", "..", "risk_biased", "config", "learning_config.py"
)
config = Config.fromfile(config_path)
model, loaders, config = load_from_config(config)
if config.seed is not None:
seed_everything(config.seed)
is_torch = True
n_scenes = 100
risk_level = 0
fig, ax = plt.subplots()
scene_params = RandomSceneParams.from_config(config)
scene_params.batch_size = n_scenes
test_scene = RandomScene(
scene_params,
is_torch=is_torch,
)
plotter = ScenePlotter(test_scene, ax=ax)
num_steps = config.num_steps
time = config.sample_times[config.num_steps - 1]
dist_cost = DistanceCostTorch(DistanceCostParams.from_config(config))
ttc_cost = TTCCostTorch(TTCCostParams.from_config(config))
len_traj = int(config.time_scene / test_scene.dt)
ped_trajs = test_scene.get_pedestrians_trajectories()[
:, :, [int(round(t / config.dt)) for t in config.sample_times]
]
ego_traj = test_scene.get_ego_ref_trajectory(config.sample_times)
batch_size = ped_trajs.shape[0]
normalized_trajs, offset = loaders.normalize_trajectory(ped_trajs)
x = normalized_trajs[:, :, : config.num_steps]
ego_history = ego_traj[:, :, : config.num_steps].repeat(batch_size, 1, 1, 1)
ego_future = ego_traj[:, :, config.num_steps :].repeat(batch_size, 1, 1, 1)
mask_x = torch.ones_like(x[..., 0])
map = torch.empty(ego_history.shape[0], 0, 0, 2, device=mask_x.device)
mask_map = torch.empty(ego_history.shape[0], 0, 0, device=mask_x.device)
# ego_conditioning = model.get_ego_conditioning(ego_history, ego_future)
pred = (
model.predict_step(
(x, mask_x, map, mask_map, offset, ego_history, ego_future),
0,
risk_level=torch.ones(n_scenes, 1, device=x.device) * risk_level,
)
.cpu()
.detach()
.numpy()
)
text_length = 10
text_height = 1
ind = int(np.random.rand() * n_scenes)
agent_selected = 0
plotter.draw_scene(ind, time=time)
plotter.draw_trajectory(
ped_trajs[ind, agent_selected, config.num_steps :], color="g"
)
plotter.draw_trajectory(ped_trajs[ind, agent_selected, : config.num_steps])
plotter.draw_trajectory(pred[ind, agent_selected], color="r")
ped_velocities = test_scene.get_pedestrians_velocities().repeat(
(1, 1, ped_trajs.shape[2], 1)
)
cost, (ttc, dist) = ttc_cost(
ego_traj[:, :, config.num_steps :],
ped_trajs[:, :, config.num_steps :],
test_scene.get_ego_ref_velocity(),
ped_velocities[:, :, config.num_steps :],
)
print(f"Equation TTC: {ttc[ind, agent_selected, num_steps]:.2f}")
print(f"Distance at TTC {dist[ind, agent_selected, num_steps]:.2f}")
plt.text(
test_scene.road_length - text_length,
test_scene.road_width - 2 * text_height,
f"TTC cost: {cost[ind, agent_selected]:.2f}",
)
cost, dist = dist_cost(
ego_traj[:, :, config.num_steps :], ped_trajs[:, :, config.num_steps :]
)
cost = cost[ind, agent_selected]
if is_torch:
print(
f"Min distance {torch.sqrt(torch.min(dist, 2)[0][ind, agent_selected]):.2f}"
)
else:
print(f"Min distance {np.sqrt(np.min(dist, 2)[ind, agent_selected]):.2f}")
ax.text(
test_scene.road_length - text_length,
test_scene.road_width - 3 * text_height,
f"Distance cost: {cost:.2f}",
)
plt.tight_layout()
plt.show()