Spaces:
Running
Running
import seaborn as sns | |
import streamlit as st | |
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode | |
import requests | |
import polars as pl | |
from datetime import date | |
import pandas as pd | |
import matplotlib | |
# Display the app title and description | |
st.markdown(""" | |
## tjStuff+ App | |
##### By: Thomas Nestico ([@TJStats](https://x.com/TJStats)) | |
##### Code: [GitHub Repo](https://github.com/tnestico/streamlit_tjstuff) | |
##### Data: [MLB](https://baseballsavant.mlb.com/) ([Gathered from my MLB Scraper](https://github.com/tnestico/mlb_scraper)) | |
#### About | |
This Streamlit app tabulates and plots my pitching metric, tjStuff+, for all MLB players during the 2024 MLB Season | |
About tjStuff+: | |
* tjStuff+ calculates the Expected Run Value (xRV) of a pitch regardless of type | |
* tjStuff+ is normally distributed, where 100 is the mean and Standard Deviation is 10 | |
* Pitch Grade is based off tjStuff+ and scales the data to the traditional 20-80 Scouting Scale for a given pitch type | |
[Learn More about tjStuff+ here](https://github.com/tnestico/tjstuff_plus/tree/main) | |
""" | |
) | |
# Dictionary to map pitch types to their corresponding colors and names | |
pitch_colours = { | |
## Fastballs ## | |
'FF': {'colour': '#FF007D', 'name': '4-Seam Fastball'}, | |
'FA': {'colour': '#FF007D', 'name': 'Fastball'}, | |
'SI': {'colour': '#98165D', 'name': 'Sinker'}, | |
'FC': {'colour': '#BE5FA0', 'name': 'Cutter'}, | |
## Offspeed ## | |
'CH': {'colour': '#F79E70', 'name': 'Changeup'}, | |
'FS': {'colour': '#FE6100', 'name': 'Splitter'}, | |
'SC': {'colour': '#F08223', 'name': 'Screwball'}, | |
'FO': {'colour': '#FFB000', 'name': 'Forkball'}, | |
## Sliders ## | |
'SL': {'colour': '#67E18D', 'name': 'Slider'}, | |
'ST': {'colour': '#1BB999', 'name': 'Sweeper'}, | |
'SV': {'colour': '#376748', 'name': 'Slurve'}, | |
## Curveballs ## | |
'KC': {'colour': '#311D8B', 'name': 'Knuckle Curve'}, | |
'CU': {'colour': '#3025CE', 'name': 'Curveball'}, | |
'CS': {'colour': '#274BFC', 'name': 'Slow Curve'}, | |
'EP': {'colour': '#648FFF', 'name': 'Eephus'}, | |
## Others ## | |
'KN': {'colour': '#867A08', 'name': 'Knuckleball'}, | |
'PO': {'colour': '#472C30', 'name': 'Pitch Out'}, | |
'UN': {'colour': '#9C8975', 'name': 'Unknown'}, | |
} | |
# Create dictionaries for pitch types and their attributes | |
dict_colour = {key: value['colour'] for key, value in pitch_colours.items()} | |
dict_pitch = {key: value['name'] for key, value in pitch_colours.items()} | |
dict_pitch_desc_type = {value['name']: key for key, value in pitch_colours.items()} | |
dict_pitch_name = {value['name']: value['colour'] for key, value in pitch_colours.items()} | |
# Define a custom colormap for styling | |
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#648FFF', '#FFFFFF', '#FFB000']) | |
# Initialize session state for cache status | |
if 'cache_cleared' not in st.session_state: | |
st.session_state.cache_cleared = False | |
# Function to fetch data and cache it | |
def fetch_data(): | |
df = pl.read_csv("tjstuff_plus_pitch_data_2024.csv").fill_nan(None) | |
return df | |
# Fetch and preprocess data | |
df = fetch_data() | |
df_plot = df.clone() | |
df = df.filter(df['pitches'] >= 10).drop_nulls(subset=['pitch_grade', 'tj_stuff_plus']) | |
df = df.sort(['pitcher_name', 'pitch_type'], descending=[False, False]) | |
# Cast columns to appropriate data types | |
df = df.with_columns([ | |
pl.col('tj_stuff_plus').cast(pl.Int64).alias('tj_stuff_plus'), | |
pl.col('pitches').cast(pl.Int64).alias('pitches'), | |
pl.col('pitcher_id').cast(pl.Int64).alias('pitcher_id'), | |
pl.col('pitch_grade').cast(pl.Int64).alias('pitch_grade') | |
]) | |
# Define column configuration for Streamlit | |
column_config_dict = { | |
'pitcher_id': 'Pitcher ID', | |
'pitcher_name': 'Pitcher Name', | |
'pitch_type': 'Pitch Type', | |
'pitches': 'Pitches', | |
'tj_stuff_plus': st.column_config.NumberColumn("tjStuff+", format="%.0f"), | |
'pitch_grade': st.column_config.NumberColumn("Pitch Grade", format="%.0f") | |
} | |
# Get unique pitch types for selection | |
unique_pitch_types = [''] + sorted(df['pitch_type'].unique().to_list()) | |
unique_pitch_types = [dict_pitch.get(x, x) for x in unique_pitch_types] | |
st.markdown(""" | |
#### tjStuff+ Table | |
Filter and sort tjStuff+ Data for all MLB Pitchers | |
""" | |
) | |
# Create a selectbox widget for pitch types | |
selected_pitch_types = st.selectbox('Select Pitch Types *(leave blank for all pitch types)*', unique_pitch_types) | |
# Create a selectbox widget for position | |
selected_position = st.selectbox('Select Position *(leave blank for all Pitchers)*', ['','SP','RP']) | |
# Filter the DataFrame based on selected pitch types | |
if selected_pitch_types == 'All': | |
df = df.filter(pl.col('pitch_type') == 'All').sort('tj_stuff_plus', descending=True) | |
elif selected_pitch_types != '': | |
df = df.filter(pl.col('pitch_type') == dict_pitch_desc_type[selected_pitch_types]).sort('tj_stuff_plus', descending=True) | |
if selected_position != '': | |
df = df.filter(pl.col('position') == selected_position).sort('tj_stuff_plus', descending=True) | |
# Convert Polars DataFrame to Pandas DataFrame and apply styling | |
styled_df = df[['pitcher_id', 'pitcher_name', 'pitch_type', 'pitches', 'tj_stuff_plus', 'pitch_grade']].to_pandas().style | |
# Apply background gradient styling to specific columns | |
styled_df = styled_df.background_gradient(subset=['tj_stuff_plus'], cmap=cmap_sum, vmin=80, vmax=120) | |
styled_df = styled_df.background_gradient(subset=['pitch_grade'], cmap=cmap_sum, vmin=20, vmax=80) | |
# Display the styled DataFrame in Streamlit | |
st.dataframe(styled_df, hide_index=True, column_config=column_config_dict, width=1500) | |
# Create dictionaries for pitcher information | |
pitcher_id_name = dict(zip(df_plot['pitcher_id'], df_plot['pitcher_name'])) | |
pitcher_id_name_id = dict(zip(df_plot['pitcher_id'], df_plot['pitcher_name'] + ' - ' + df_plot['pitcher_id'])) | |
pitcher_name_id_id = dict(zip(df_plot['pitcher_name'] + ' - ' + df_plot['pitcher_id'], df_plot['pitcher_id'])) | |
pitcher_id_position = dict(zip(df_plot['pitcher_id'], df_plot.drop_nulls(subset=['position'])['position'])) | |
st.markdown(""" | |
#### tjStuff+ Plot | |
Visualize tjStuff+ and Pitching Grade by Pitcher | |
""" | |
) | |
# Create a selectbox widget for pitchers | |
pitcher_id_name_select = st.selectbox('Select Pitcher', sorted(pitcher_name_id_id.keys())) | |
# Get selected pitcher information | |
pitcher_id = pitcher_name_id_id[pitcher_id_name_select] | |
position = pitcher_id_position[pitcher_id] | |
pitcher_name = pitcher_id_name[pitcher_id] | |
import tjstuff_plot | |
# Button to update plot | |
# Get selected pitcher information | |
pitcher_id = pitcher_name_id_id[pitcher_id_name_select] | |
position = pitcher_id_position[pitcher_id] | |
pitcher_name = pitcher_id_name[pitcher_id] | |
import tjstuff_plot | |
# Button to update plot | |
if st.button('Update Plot'): | |
st.session_state.update_plot = True | |
tjstuff_plot.tjstuff_plot(df_plot, pitcher_id, position, pitcher_name) | |