Applio-V3-HF / rvc /train /extract /extract_feature_print.py
PlayerBPlaytime's picture
Upload 125 files
16de183 verified
import os
import sys
import tqdm
import torch
import torch.nn.functional as F
import fairseq
import soundfile as sf
import numpy as np
device = sys.argv[1]
n_parts = int(sys.argv[2])
i_part = int(sys.argv[3])
if len(sys.argv) == 7:
exp_dir, version, is_half = sys.argv[4], sys.argv[5], sys.argv[6]
else:
i_gpu, exp_dir = sys.argv[4], sys.argv[5]
os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu)
version, is_half = sys.argv[6], sys.argv[7]
def forward_dml(ctx, x, scale):
ctx.scale = scale
res = x.clone().detach()
return res
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
model_path = "hubert_base.pt"
wav_path = f"{exp_dir}/1_16k_wavs"
out_path = f"{exp_dir}/3_feature256" if version == "v1" else f"{exp_dir}/3_feature768"
os.makedirs(out_path, exist_ok=True)
def read_wave(wav_path, normalize=False):
wav, sr = sf.read(wav_path)
assert sr == 16000
feats = torch.from_numpy(wav)
feats = feats.half() if is_half else feats.float()
feats = feats.mean(-1) if feats.dim() == 2 else feats
feats = feats.view(1, -1)
if normalize:
with torch.no_grad():
feats = F.layer_norm(feats, feats.shape)
return feats
print("Starting feature extraction...")
models, saved_cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[model_path],
suffix="",
)
model = models[0]
model = model.to(device)
if device not in ["mps", "cpu"]:
model = model.half()
model.eval()
todo = sorted(os.listdir(wav_path))[i_part::n_parts]
n = max(1, len(todo) // 10)
if len(todo) == 0:
print(
"An error occurred in the feature extraction, make sure you have provided the audios correctly."
)
else:
print(f"{len(todo)}")
with tqdm.tqdm(total=len(todo)) as pbar:
for idx, file in enumerate(todo):
try:
if file.endswith(".wav"):
wav_file_path = os.path.join(wav_path, file)
out_file_path = os.path.join(out_path, file.replace("wav", "npy"))
if os.path.exists(out_file_path):
continue
feats = read_wave(wav_file_path, normalize=saved_cfg.task.normalize)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.to(device),
"padding_mask": padding_mask.to(device),
"output_layer": 9 if version == "v1" else 12,
}
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = (
model.final_proj(logits[0])
if version == "v1"
else logits[0]
)
feats = feats.squeeze(0).float().cpu().numpy()
if np.isnan(feats).sum() == 0:
np.save(out_file_path, feats, allow_pickle=False)
else:
print(f"{file} - contains nan")
pbar.set_description(f"Processing {file} {feats.shape}")
except Exception as error:
print(error)
pbar.update(1)
print("Feature extraction completed successfully!")