Spaces:
Running
on
Zero
Running
on
Zero
Ji4chenLi
commited on
Commit
•
7a34add
1
Parent(s):
70cdee7
support higher version of gradio
Browse files- app.py +132 -221
- requirements.txt +0 -1
- style.css +0 -16
app.py
CHANGED
@@ -1,18 +1,16 @@
|
|
1 |
import os
|
2 |
import uuid
|
3 |
-
import gradio as gr
|
4 |
-
import numpy as np
|
5 |
-
import random
|
6 |
-
import time
|
7 |
from omegaconf import OmegaConf
|
8 |
-
|
9 |
import spaces
|
10 |
|
|
|
|
|
|
|
11 |
import torch
|
12 |
import torchvision
|
13 |
-
|
14 |
-
|
15 |
-
import
|
16 |
|
17 |
from utils.lora import collapse_lora, monkeypatch_remove_lora
|
18 |
from utils.lora_handler import LoraHandler
|
@@ -21,11 +19,6 @@ from utils.utils import instantiate_from_config
|
|
21 |
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
|
22 |
from pipeline.t2v_turbo_vc2_pipeline import T2VTurboVC2Pipeline
|
23 |
|
24 |
-
|
25 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
-
MAX_SEED = np.iinfo(np.int32).max
|
27 |
-
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
28 |
-
|
29 |
DESCRIPTION = """# T2V-Turbo 🚀
|
30 |
We provide T2V-Turbo (VC2) distilled from [VideoCrafter2](https://ailab-cvc.github.io/videocrafter2/) with the reward feedback from [HPSv2.1](https://github.com/tgxs002/HPSv2/tree/master) and [InternVid2 Stage 2 Model](https://huggingface.co/OpenGVLab/InternVideo2-Stage2_1B-224p-f4).
|
31 |
|
@@ -37,9 +30,84 @@ elif hasattr(torch, "xpu") and torch.xpu.is_available():
|
|
37 |
DESCRIPTION += "\n<p>Running on XPU 🤓</p>"
|
38 |
else:
|
39 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
|
|
40 |
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
config = OmegaConf.load("configs/inference_t2v_512_v2.0.yaml")
|
44 |
model_config = config.pop("model", OmegaConf.create())
|
45 |
pretrained_t2v = instantiate_from_config(model_config)
|
@@ -72,8 +140,6 @@ if torch.cuda.is_available():
|
|
72 |
collapse_lora(unet, lora_manager.unet_replace_modules)
|
73 |
monkeypatch_remove_lora(unet)
|
74 |
|
75 |
-
torch.save(unet.state_dict(), "checkpoints/merged_unet.pt")
|
76 |
-
|
77 |
pretrained_t2v.model.diffusion_model = unet
|
78 |
scheduler = T2VTurboScheduler(
|
79 |
linear_start=model_config["params"]["linear_start"],
|
@@ -82,215 +148,60 @@ if torch.cuda.is_available():
|
|
82 |
pipeline = T2VTurboVC2Pipeline(pretrained_t2v, scheduler, model_config)
|
83 |
|
84 |
pipeline.to(device)
|
85 |
-
else:
|
86 |
-
assert False
|
87 |
-
|
88 |
-
|
89 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
90 |
-
if randomize_seed:
|
91 |
-
seed = random.randint(0, MAX_SEED)
|
92 |
-
return seed
|
93 |
-
|
94 |
-
|
95 |
-
def save_video(
|
96 |
-
vid_tensor, profile: gr.OAuthProfile | None, metadata: dict, root_path="./", fps=16
|
97 |
-
):
|
98 |
-
unique_name = str(uuid.uuid4()) + ".mp4"
|
99 |
-
prefix = ""
|
100 |
-
for k, v in metadata.items():
|
101 |
-
prefix += f"{k}={v}_"
|
102 |
-
unique_name = prefix + unique_name
|
103 |
-
unique_name = os.path.join(root_path, unique_name)
|
104 |
-
|
105 |
-
video = vid_tensor.detach().cpu()
|
106 |
-
video = torch.clamp(video.float(), -1.0, 1.0)
|
107 |
-
video = video.permute(1, 0, 2, 3) # t,c,h,w
|
108 |
-
video = (video + 1.0) / 2.0
|
109 |
-
video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
110 |
-
|
111 |
-
torchvision.io.write_video(
|
112 |
-
unique_name, video, fps=fps, video_codec="h264", options={"crf": "10"}
|
113 |
-
)
|
114 |
-
return unique_name
|
115 |
-
|
116 |
-
|
117 |
-
def save_videos(
|
118 |
-
video_array, profile: gr.OAuthProfile | None, metadata: dict, fps: int = 16
|
119 |
-
):
|
120 |
-
paths = []
|
121 |
-
root_path = "./videos/"
|
122 |
-
os.makedirs(root_path, exist_ok=True)
|
123 |
-
with ThreadPoolExecutor() as executor:
|
124 |
-
paths = list(
|
125 |
-
executor.map(
|
126 |
-
save_video,
|
127 |
-
video_array,
|
128 |
-
[profile] * len(video_array),
|
129 |
-
[metadata] * len(video_array),
|
130 |
-
[root_path] * len(video_array),
|
131 |
-
[fps] * len(video_array),
|
132 |
-
)
|
133 |
-
)
|
134 |
-
return paths[0]
|
135 |
-
|
136 |
-
|
137 |
-
@spaces.GPU(duration=60)
|
138 |
-
def generate(
|
139 |
-
prompt: str,
|
140 |
-
seed: int = 0,
|
141 |
-
guidance_scale: float = 7.5,
|
142 |
-
num_inference_steps: int = 4,
|
143 |
-
num_frames: int = 16,
|
144 |
-
fps: int = 16,
|
145 |
-
randomize_seed: bool = False,
|
146 |
-
param_dtype="torch.float16",
|
147 |
-
progress=gr.Progress(track_tqdm=True),
|
148 |
-
profile: gr.OAuthProfile | None = None,
|
149 |
-
):
|
150 |
-
seed = randomize_seed_fn(seed, randomize_seed)
|
151 |
-
torch.manual_seed(seed)
|
152 |
-
pipeline.to(
|
153 |
-
torch_device=device,
|
154 |
-
torch_dtype=torch.float16 if param_dtype == "torch.float16" else torch.float32,
|
155 |
-
)
|
156 |
-
start_time = time.time()
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
]
|
192 |
-
|
193 |
-
|
194 |
-
if torch.cuda.is_available():
|
195 |
-
power_device = "GPU"
|
196 |
-
else:
|
197 |
-
power_device = "CPU"
|
198 |
-
|
199 |
-
with gr.Blocks(css="style.css") as demo:
|
200 |
-
|
201 |
-
with gr.Column(elem_id="col-container"):
|
202 |
-
gr.Markdown(DESCRIPTION)
|
203 |
-
|
204 |
-
with gr.Row():
|
205 |
-
prompt = gr.Text(
|
206 |
-
label="Prompt",
|
207 |
-
show_label=False,
|
208 |
-
max_lines=1,
|
209 |
-
placeholder="Enter your prompt",
|
210 |
-
container=False,
|
211 |
-
)
|
212 |
-
run_button = gr.Button("Run", scale=0)
|
213 |
-
result_video = gr.Video(
|
214 |
-
label="Generated Video", interactive=False, autoplay=True
|
215 |
-
)
|
216 |
-
|
217 |
-
with gr.Accordion("Advanced Settings", open=False):
|
218 |
-
|
219 |
-
seed = gr.Slider(
|
220 |
label="Seed",
|
221 |
minimum=0,
|
222 |
maximum=MAX_SEED,
|
223 |
step=1,
|
224 |
value=0,
|
225 |
randomize=True,
|
226 |
-
)
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
value=7.5,
|
244 |
-
)
|
245 |
-
num_inference_steps = gr.Slider(
|
246 |
-
label="Number of inference steps for base",
|
247 |
-
minimum=1,
|
248 |
-
maximum=8,
|
249 |
-
step=1,
|
250 |
-
value=4,
|
251 |
-
)
|
252 |
-
with gr.Row():
|
253 |
-
num_frames = gr.Slider(
|
254 |
-
label="Number of Video Frames",
|
255 |
-
minimum=16,
|
256 |
-
maximum=48,
|
257 |
-
step=8,
|
258 |
-
value=16,
|
259 |
-
)
|
260 |
-
fps = gr.Slider(
|
261 |
-
label="FPS",
|
262 |
-
minimum=8,
|
263 |
-
maximum=32,
|
264 |
-
step=4,
|
265 |
-
value=16,
|
266 |
-
)
|
267 |
-
|
268 |
-
gr.Examples(
|
269 |
-
examples=examples,
|
270 |
-
inputs=prompt,
|
271 |
-
outputs=result_video,
|
272 |
-
fn=generate,
|
273 |
-
cache_examples=CACHE_EXAMPLES,
|
274 |
-
)
|
275 |
-
|
276 |
-
gr.on(
|
277 |
-
triggers=[
|
278 |
-
prompt.submit,
|
279 |
-
run_button.click,
|
280 |
-
],
|
281 |
-
fn=generate,
|
282 |
-
inputs=[
|
283 |
-
prompt,
|
284 |
-
seed,
|
285 |
-
guidance_scale,
|
286 |
-
num_inference_steps,
|
287 |
-
num_frames,
|
288 |
-
fps,
|
289 |
-
randomize_seed,
|
290 |
-
param_dtype,
|
291 |
-
],
|
292 |
-
outputs=[result_video, seed],
|
293 |
-
api_name="run",
|
294 |
-
)
|
295 |
-
|
296 |
-
demo.queue().launch()
|
|
|
1 |
import os
|
2 |
import uuid
|
|
|
|
|
|
|
|
|
3 |
from omegaconf import OmegaConf
|
|
|
4 |
import spaces
|
5 |
|
6 |
+
import random
|
7 |
+
|
8 |
+
import imageio
|
9 |
import torch
|
10 |
import torchvision
|
11 |
+
import gradio as gr
|
12 |
+
import numpy as np
|
13 |
+
from gradio.components import Textbox, Video
|
14 |
|
15 |
from utils.lora import collapse_lora, monkeypatch_remove_lora
|
16 |
from utils.lora_handler import LoraHandler
|
|
|
19 |
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
|
20 |
from pipeline.t2v_turbo_vc2_pipeline import T2VTurboVC2Pipeline
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
DESCRIPTION = """# T2V-Turbo 🚀
|
23 |
We provide T2V-Turbo (VC2) distilled from [VideoCrafter2](https://ailab-cvc.github.io/videocrafter2/) with the reward feedback from [HPSv2.1](https://github.com/tgxs002/HPSv2/tree/master) and [InternVid2 Stage 2 Model](https://huggingface.co/OpenGVLab/InternVideo2-Stage2_1B-224p-f4).
|
24 |
|
|
|
30 |
DESCRIPTION += "\n<p>Running on XPU 🤓</p>"
|
31 |
else:
|
32 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
33 |
+
MAX_SEED = np.iinfo(np.int32).max
|
34 |
|
35 |
|
36 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
37 |
+
if randomize_seed:
|
38 |
+
seed = random.randint(0, MAX_SEED)
|
39 |
+
return seed
|
40 |
+
|
41 |
+
|
42 |
+
def save_video(video_array, video_save_path, fps: int = 16):
|
43 |
+
video = video_array.detach().cpu()
|
44 |
+
video = torch.clamp(video.float(), -1.0, 1.0)
|
45 |
+
video = video.permute(1, 0, 2, 3) # t,c,h,w
|
46 |
+
video = (video + 1.0) / 2.0
|
47 |
+
video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
48 |
+
|
49 |
+
torchvision.io.write_video(
|
50 |
+
video_save_path, video, fps=fps, video_codec="h264", options={"crf": "10"}
|
51 |
+
)
|
52 |
+
|
53 |
+
example_txt = [
|
54 |
+
"An astronaut riding a horse.",
|
55 |
+
"Darth vader surfing in waves.",
|
56 |
+
"Robot dancing in times square.",
|
57 |
+
"Clown fish swimming through the coral reef.",
|
58 |
+
"Pikachu snowboarding.",
|
59 |
+
"With the style of van gogh, A young couple dances under the moonlight by the lake.",
|
60 |
+
"A young woman with glasses is jogging in the park wearing a pink headband.",
|
61 |
+
"Impressionist style, a yellow rubber duck floating on the wave on the sunset",
|
62 |
+
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
|
63 |
+
"With the style of low-poly game art, A majestic, white horse gallops gracefully across a moonlit beach.",
|
64 |
+
]
|
65 |
+
|
66 |
+
examples = [[i, 7.5, 4, 16, 16] for i in example_txt]
|
67 |
+
|
68 |
+
@spaces.GPU(duration=300)
|
69 |
+
@torch.inference_mode()
|
70 |
+
def generate(
|
71 |
+
prompt: str,
|
72 |
+
guidance_scale: float = 7.5,
|
73 |
+
num_inference_steps: int = 4,
|
74 |
+
num_frames: int = 16,
|
75 |
+
fps: int = 16,
|
76 |
+
seed: int = 0,
|
77 |
+
randomize_seed: bool = False,
|
78 |
+
):
|
79 |
+
|
80 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
81 |
+
result = pipeline(
|
82 |
+
prompt=prompt,
|
83 |
+
frames=num_frames,
|
84 |
+
fps=fps,
|
85 |
+
guidance_scale=guidance_scale,
|
86 |
+
num_inference_steps=num_inference_steps,
|
87 |
+
num_videos_per_prompt=1,
|
88 |
+
)
|
89 |
+
|
90 |
+
torch.cuda.empty_cache()
|
91 |
+
tmp_save_path = "tmp.mp4"
|
92 |
+
root_path = "./videos/"
|
93 |
+
os.makedirs(root_path, exist_ok=True)
|
94 |
+
video_save_path = os.path.join(root_path, tmp_save_path)
|
95 |
+
|
96 |
+
save_video(result[0], video_save_path, fps=fps)
|
97 |
+
display_model_info = f"Video size: {num_frames}x320x512, Sampling Step: {num_inference_steps}, Guidance Scale: {guidance_scale}"
|
98 |
+
return video_save_path, prompt, display_model_info, seed
|
99 |
+
|
100 |
+
|
101 |
+
block_css = """
|
102 |
+
#buttons button {
|
103 |
+
min-width: min(120px,100%);
|
104 |
+
}
|
105 |
+
"""
|
106 |
+
|
107 |
+
|
108 |
+
if __name__ == "__main__":
|
109 |
+
device = torch.device("cuda:0")
|
110 |
+
|
111 |
config = OmegaConf.load("configs/inference_t2v_512_v2.0.yaml")
|
112 |
model_config = config.pop("model", OmegaConf.create())
|
113 |
pretrained_t2v = instantiate_from_config(model_config)
|
|
|
140 |
collapse_lora(unet, lora_manager.unet_replace_modules)
|
141 |
monkeypatch_remove_lora(unet)
|
142 |
|
|
|
|
|
143 |
pretrained_t2v.model.diffusion_model = unet
|
144 |
scheduler = T2VTurboScheduler(
|
145 |
linear_start=model_config["params"]["linear_start"],
|
|
|
148 |
pipeline = T2VTurboVC2Pipeline(pretrained_t2v, scheduler, model_config)
|
149 |
|
150 |
pipeline.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
demo = gr.Interface(
|
153 |
+
fn=generate,
|
154 |
+
inputs=[
|
155 |
+
Textbox(label="", placeholder="Please enter your prompt. \n"),
|
156 |
+
gr.Slider(
|
157 |
+
label="Guidance scale",
|
158 |
+
minimum=2,
|
159 |
+
maximum=14,
|
160 |
+
step=0.1,
|
161 |
+
value=7.5,
|
162 |
+
),
|
163 |
+
gr.Slider(
|
164 |
+
label="Number of inference steps",
|
165 |
+
minimum=1,
|
166 |
+
maximum=8,
|
167 |
+
step=1,
|
168 |
+
value=4,
|
169 |
+
),
|
170 |
+
gr.Slider(
|
171 |
+
label="Number of Video Frames",
|
172 |
+
minimum=16,
|
173 |
+
maximum=48,
|
174 |
+
step=8,
|
175 |
+
value=16,
|
176 |
+
),
|
177 |
+
gr.Slider(
|
178 |
+
label="FPS",
|
179 |
+
minimum=8,
|
180 |
+
maximum=32,
|
181 |
+
step=4,
|
182 |
+
value=16,
|
183 |
+
),
|
184 |
+
gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
label="Seed",
|
186 |
minimum=0,
|
187 |
maximum=MAX_SEED,
|
188 |
step=1,
|
189 |
value=0,
|
190 |
randomize=True,
|
191 |
+
),
|
192 |
+
gr.Checkbox(label="Randomize seed", value=True),
|
193 |
+
],
|
194 |
+
outputs=[
|
195 |
+
gr.Video(label="Generated Video", width=512, height=320, interactive=False, autoplay=True),
|
196 |
+
Textbox(label="input prompt"),
|
197 |
+
Textbox(label="model info"),
|
198 |
+
gr.Slider(label="seed"),
|
199 |
+
],
|
200 |
+
description=DESCRIPTION,
|
201 |
+
theme=gr.themes.Default(),
|
202 |
+
css=block_css,
|
203 |
+
examples=examples,
|
204 |
+
cache_examples=False,
|
205 |
+
concurrency_limit=10,
|
206 |
+
)
|
207 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -5,7 +5,6 @@ transformers==4.40.0
|
|
5 |
accelerate==0.29.3
|
6 |
imageio==2.34.0
|
7 |
decord==0.6.0
|
8 |
-
gradio==3.48.0
|
9 |
opencv-python
|
10 |
spaces
|
11 |
einops
|
|
|
5 |
accelerate==0.29.3
|
6 |
imageio==2.34.0
|
7 |
decord==0.6.0
|
|
|
8 |
opencv-python
|
9 |
spaces
|
10 |
einops
|
style.css
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
h1 {
|
2 |
-
text-align: center;
|
3 |
-
}
|
4 |
-
|
5 |
-
#duplicate-button {
|
6 |
-
margin: auto;
|
7 |
-
color: #fff;
|
8 |
-
background: #1565c0;
|
9 |
-
border-radius: 100vh;
|
10 |
-
}
|
11 |
-
|
12 |
-
#component-0 {
|
13 |
-
max-width: 830px;
|
14 |
-
margin: auto;
|
15 |
-
padding-top: 1.5rem;
|
16 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|