T2V-Turbo / pipeline /t2v_turbo_ms_pipeline.py
Ji4chenLi
initial test
9f200a2
import torch
from diffusers import DiffusionPipeline
from typing import List, Optional, Tuple, Union, Dict, Any
from diffusers import logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.models import AutoencoderKL
from transformers import CLIPTokenizer, CLIPTextModel
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class T2VTurboMSPipeline(DiffusionPipeline):
def __init__(
self,
unet,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
scheduler: T2VTurboScheduler,
):
super().__init__()
self.register_modules(
unet=unet,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
)
self.vae_scale_factor = 8
def _encode_prompt(
self,
prompt,
device,
num_videos_per_prompt,
prompt_embeds: None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_videos_per_prompt (`int`):
number of images that should be generated per prompt
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
"""
if prompt_embeds is None:
with torch.no_grad():
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
prompt_embeds = self.text_encoder(text_input_ids)[0]
prompt_embeds = prompt_embeds.to(device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(
bs_embed * num_videos_per_prompt, seq_len, -1
)
# Don't need to get uncond prompt embedding because of LCM Guided Distillation
return prompt_embeds
def prepare_latents(
self,
batch_size,
num_channels_latents,
frames,
height,
width,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size,
num_channels_latents,
frames,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if latents is None:
latents = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32):
"""
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps: torch.Tensor: generate embedding vectors at these timesteps
embedding_dim: int: dimension of the embeddings to generate
dtype: data type of the generated embeddings
Returns:
embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = 256,
width: Optional[int] = 256,
frames: int = 16,
guidance_scale: float = 7.5,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
num_inference_steps: int = 4,
lcm_origin_steps: int = 50,
prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
):
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG)
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
device,
num_videos_per_prompt,
prompt_embeds=prompt_embeds,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, lcm_origin_steps)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variable
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
bs = batch_size * num_videos_per_prompt
# 6. Get Guidance Scale Embedding
w = torch.tensor(guidance_scale).repeat(bs)
w_embedding = self.get_w_embedding(w, embedding_dim=256).to(device)
# 7. LCM MultiStep Sampling Loop:
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
ts = torch.full((bs,), t, device=device, dtype=torch.long)
# model prediction (v-prediction, eps, x)
model_pred = self.unet(
latents,
ts,
timestep_cond=w_embedding,
encoder_hidden_states=prompt_embeds.float(),
).sample
# compute the previous noisy sample x_t -> x_t-1
latents, denoised = self.scheduler.step(
model_pred, i, t, latents, return_dict=False
)
progress_bar.update()
if not output_type == "latent":
t = denoised.shape[2]
z = denoised.to(self.vae.dtype) / self.vae.config.scaling_factor
videos = torch.cat(
[self.vae.decode(z[:, :, i])[0].unsqueeze(2) for i in range(t)],
dim=2,
)
else:
videos = denoised
return videos