Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
|
2 |
+
import os
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
+
import json
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
from constants import *
|
10 |
+
from huggingface_hub import Repository
|
11 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
12 |
+
|
13 |
+
global data_component, filter_component
|
14 |
+
|
15 |
+
|
16 |
+
def upload_file(files):
|
17 |
+
file_paths = [file.name for file in files]
|
18 |
+
return file_paths
|
19 |
+
|
20 |
+
def add_new_eval(
|
21 |
+
input_file,
|
22 |
+
model_name_textbox: str,
|
23 |
+
revision_name_textbox: str,
|
24 |
+
model_link: str,
|
25 |
+
):
|
26 |
+
if input_file is None:
|
27 |
+
return "Error! Empty file!"
|
28 |
+
|
29 |
+
upload_data=json.loads(input_file)
|
30 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
31 |
+
submission_repo.git_pull()
|
32 |
+
shutil.copyfile(CSV_DIR, os.path.join(SUBMISSION_NAME, f"{input_file}"))
|
33 |
+
|
34 |
+
csv_data = pd.read_csv(CSV_DIR)
|
35 |
+
|
36 |
+
if revision_name_textbox == '':
|
37 |
+
col = csv_data.shape[0]
|
38 |
+
model_name = model_name_textbox
|
39 |
+
else:
|
40 |
+
model_name = revision_name_textbox
|
41 |
+
model_name_list = csv_data['Model Name (clickable)']
|
42 |
+
name_list = [name.split(']')[0][1:] for name in model_name_list]
|
43 |
+
if revision_name_textbox not in name_list:
|
44 |
+
col = csv_data.shape[0]
|
45 |
+
else:
|
46 |
+
col = name_list.index(revision_name_textbox)
|
47 |
+
|
48 |
+
if model_link == '':
|
49 |
+
model_name = model_name # no url
|
50 |
+
else:
|
51 |
+
model_name = '[' + model_name + '](' + model_link + ')'
|
52 |
+
|
53 |
+
# add new data
|
54 |
+
new_data = [
|
55 |
+
model_name
|
56 |
+
]
|
57 |
+
for key in TASK_INFO:
|
58 |
+
if key in upload_data:
|
59 |
+
new_data.append(upload_data[key][0])
|
60 |
+
else:
|
61 |
+
new_data.append(0)
|
62 |
+
csv_data.loc[col] = new_data
|
63 |
+
csv_data = csv_data.to_csv(CSV_DIR, index=False)
|
64 |
+
submission_repo.push_to_hub()
|
65 |
+
return 0
|
66 |
+
|
67 |
+
def get_normalized_df(df):
|
68 |
+
# final_score = df.drop('name', axis=1).sum(axis=1)
|
69 |
+
# df.insert(1, 'Overall Score', final_score)
|
70 |
+
normalize_df = df.copy().fillna(0.0)
|
71 |
+
for column in normalize_df.columns[1:]:
|
72 |
+
min_val = NORMALIZE_DIC[column]['Min']
|
73 |
+
max_val = NORMALIZE_DIC[column]['Max']
|
74 |
+
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
|
75 |
+
return normalize_df
|
76 |
+
|
77 |
+
def calculate_selected_score(df, selected_columns):
|
78 |
+
# selected_score = df[selected_columns].sum(axis=1)
|
79 |
+
selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST]
|
80 |
+
selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST]
|
81 |
+
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY])
|
82 |
+
selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ])
|
83 |
+
if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any():
|
84 |
+
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
85 |
+
return selected_score.fillna(0.0)
|
86 |
+
if selected_quality_score.isna().any().any():
|
87 |
+
return selected_semantic_score
|
88 |
+
if selected_semantic_score.isna().any().any():
|
89 |
+
return selected_quality_score
|
90 |
+
# print(selected_semantic_score,selected_quality_score )
|
91 |
+
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
92 |
+
return selected_score.fillna(0.0)
|
93 |
+
|
94 |
+
def get_final_score(df, selected_columns):
|
95 |
+
normalize_df = get_normalized_df(df)
|
96 |
+
#final_score = normalize_df.drop('name', axis=1).sum(axis=1)
|
97 |
+
for name in normalize_df.drop('Model Name (clickable)', axis=1):
|
98 |
+
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
|
99 |
+
quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST])
|
100 |
+
semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ])
|
101 |
+
final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
|
102 |
+
if 'Total Score' in df:
|
103 |
+
df['Total Score'] = final_score
|
104 |
+
else:
|
105 |
+
df.insert(1, 'Total Score', final_score)
|
106 |
+
if 'Semantic Score' in df:
|
107 |
+
df['Semantic Score'] = semantic_score
|
108 |
+
else:
|
109 |
+
df.insert(2, 'Semantic Score', semantic_score)
|
110 |
+
if 'Quality Score' in df:
|
111 |
+
df['Quality Score'] = quality_score
|
112 |
+
else:
|
113 |
+
df.insert(3, 'Quality Score', quality_score)
|
114 |
+
selected_score = calculate_selected_score(normalize_df, selected_columns)
|
115 |
+
if 'Selected Score' in df:
|
116 |
+
df['Selected Score'] = selected_score
|
117 |
+
else:
|
118 |
+
df.insert(1, 'Selected Score', selected_score)
|
119 |
+
return df
|
120 |
+
|
121 |
+
|
122 |
+
def get_final_score_quality(df, selected_columns):
|
123 |
+
normalize_df = get_normalized_df(df)
|
124 |
+
for name in normalize_df.drop('Model Name (clickable)', axis=1):
|
125 |
+
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
|
126 |
+
quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / sum([DIM_WEIGHT[i] for i in QUALITY_TAB])
|
127 |
+
|
128 |
+
if 'Quality Score' in df:
|
129 |
+
df['Quality Score'] = quality_score
|
130 |
+
else:
|
131 |
+
df.insert(1, 'Quality Score', quality_score)
|
132 |
+
# selected_score = normalize_df[selected_columns].sum(axis=1) / len(selected_columns)
|
133 |
+
selected_score = normalize_df[selected_columns].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_columns])
|
134 |
+
if 'Selected Score' in df:
|
135 |
+
df['Selected Score'] = selected_score
|
136 |
+
else:
|
137 |
+
df.insert(1, 'Selected Score', selected_score)
|
138 |
+
return df
|
139 |
+
|
140 |
+
def get_baseline_df():
|
141 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
142 |
+
submission_repo.git_pull()
|
143 |
+
df = pd.read_csv(CSV_DIR)
|
144 |
+
df = get_final_score(df, checkbox_group.value)
|
145 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
146 |
+
present_columns = MODEL_INFO + checkbox_group.value
|
147 |
+
df = df[present_columns]
|
148 |
+
df = convert_scores_to_percentage(df)
|
149 |
+
return df
|
150 |
+
|
151 |
+
def get_baseline_df_quality():
|
152 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
153 |
+
submission_repo.git_pull()
|
154 |
+
df = pd.read_csv(QUALITY_DIR)
|
155 |
+
df = get_final_score_quality(df, checkbox_group_quality.value)
|
156 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
157 |
+
present_columns = MODEL_INFO_TAB_QUALITY + checkbox_group_quality.value
|
158 |
+
df = df[present_columns]
|
159 |
+
df = convert_scores_to_percentage(df)
|
160 |
+
return df
|
161 |
+
|
162 |
+
def get_all_df(selected_columns, dir=CSV_DIR):
|
163 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
164 |
+
submission_repo.git_pull()
|
165 |
+
df = pd.read_csv(dir)
|
166 |
+
df = get_final_score(df, selected_columns)
|
167 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
168 |
+
return df
|
169 |
+
|
170 |
+
def get_all_df_quality(selected_columns, dir=QUALITY_DIR):
|
171 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
172 |
+
submission_repo.git_pull()
|
173 |
+
df = pd.read_csv(dir)
|
174 |
+
df = get_final_score_quality(df, selected_columns)
|
175 |
+
df = df.sort_values(by="Selected Score", ascending=False)
|
176 |
+
return df
|
177 |
+
|
178 |
+
|
179 |
+
def convert_scores_to_percentage(df):
|
180 |
+
# 对DataFrame中的每一列(除了'name'列)进行操作
|
181 |
+
for column in df.columns[1:]: # 假设第一列是'name'
|
182 |
+
df[column] = round(df[column] * 100,2) # 将分数转换为百分数
|
183 |
+
df[column] = df[column].astype(str) + '%'
|
184 |
+
return df
|
185 |
+
|
186 |
+
def choose_all_quailty():
|
187 |
+
return gr.update(value=QUALITY_LIST)
|
188 |
+
|
189 |
+
def choose_all_semantic():
|
190 |
+
return gr.update(value=SEMANTIC_LIST)
|
191 |
+
|
192 |
+
def disable_all():
|
193 |
+
return gr.update(value=[])
|
194 |
+
|
195 |
+
def enable_all():
|
196 |
+
return gr.update(value=TASK_INFO)
|
197 |
+
|
198 |
+
def on_filter_model_size_method_change(selected_columns):
|
199 |
+
updated_data = get_all_df(selected_columns, CSV_DIR)
|
200 |
+
#print(updated_data)
|
201 |
+
# columns:
|
202 |
+
selected_columns = [item for item in TASK_INFO if item in selected_columns]
|
203 |
+
present_columns = MODEL_INFO + selected_columns
|
204 |
+
updated_data = updated_data[present_columns]
|
205 |
+
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
206 |
+
updated_data = convert_scores_to_percentage(updated_data)
|
207 |
+
updated_headers = present_columns
|
208 |
+
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
|
209 |
+
# print(updated_data,present_columns,update_datatype)
|
210 |
+
filter_component = gr.components.Dataframe(
|
211 |
+
value=updated_data,
|
212 |
+
headers=updated_headers,
|
213 |
+
type="pandas",
|
214 |
+
datatype=update_datatype,
|
215 |
+
interactive=False,
|
216 |
+
visible=True,
|
217 |
+
)
|
218 |
+
return filter_component#.value
|
219 |
+
|
220 |
+
def on_filter_model_size_method_change_quality(selected_columns):
|
221 |
+
updated_data = get_all_df_quality(selected_columns, QUALITY_DIR)
|
222 |
+
#print(updated_data)
|
223 |
+
# columns:
|
224 |
+
selected_columns = [item for item in QUALITY_TAB if item in selected_columns]
|
225 |
+
present_columns = MODEL_INFO_TAB_QUALITY + selected_columns
|
226 |
+
updated_data = updated_data[present_columns]
|
227 |
+
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
|
228 |
+
updated_data = convert_scores_to_percentage(updated_data)
|
229 |
+
updated_headers = present_columns
|
230 |
+
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
|
231 |
+
# print(updated_data,present_columns,update_datatype)
|
232 |
+
filter_component = gr.components.Dataframe(
|
233 |
+
value=updated_data,
|
234 |
+
headers=updated_headers,
|
235 |
+
type="pandas",
|
236 |
+
datatype=update_datatype,
|
237 |
+
interactive=False,
|
238 |
+
visible=True,
|
239 |
+
)
|
240 |
+
return filter_component#.value
|
241 |
+
|
242 |
+
|
243 |
+
block = gr.Blocks()
|
244 |
+
|
245 |
+
|
246 |
+
with block:
|
247 |
+
gr.Markdown(
|
248 |
+
LEADERBORAD_INTRODUCTION
|
249 |
+
)
|
250 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
251 |
+
# Table 0
|
252 |
+
with gr.TabItem("📊 VBench", elem_id="vbench-tab-table", id=1):
|
253 |
+
with gr.Row():
|
254 |
+
with gr.Accordion("Citation", open=False):
|
255 |
+
citation_button = gr.Textbox(
|
256 |
+
value=CITATION_BUTTON_TEXT,
|
257 |
+
label=CITATION_BUTTON_LABEL,
|
258 |
+
elem_id="citation-button",
|
259 |
+
lines=10,
|
260 |
+
)
|
261 |
+
|
262 |
+
gr.Markdown(
|
263 |
+
TABLE_INTRODUCTION
|
264 |
+
)
|
265 |
+
with gr.Row():
|
266 |
+
with gr.Column(scale=0.2):
|
267 |
+
choosen_q = gr.Button("Select Quality Dimensions")
|
268 |
+
choosen_s = gr.Button("Select Semantic Dimensions")
|
269 |
+
# enable_b = gr.Button("Select All")
|
270 |
+
disable_b = gr.Button("Deselect All")
|
271 |
+
|
272 |
+
with gr.Column(scale=0.8):
|
273 |
+
# selection for column part:
|
274 |
+
checkbox_group = gr.CheckboxGroup(
|
275 |
+
choices=TASK_INFO,
|
276 |
+
value=DEFAULT_INFO,
|
277 |
+
label="Evaluation Dimension",
|
278 |
+
interactive=True,
|
279 |
+
)
|
280 |
+
|
281 |
+
data_component = gr.components.Dataframe(
|
282 |
+
value=get_baseline_df,
|
283 |
+
headers=COLUMN_NAMES,
|
284 |
+
type="pandas",
|
285 |
+
datatype=DATA_TITILE_TYPE,
|
286 |
+
interactive=False,
|
287 |
+
visible=True,
|
288 |
+
)
|
289 |
+
|
290 |
+
choosen_q.click(choose_all_quailty, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component)
|
291 |
+
choosen_s.click(choose_all_semantic, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component)
|
292 |
+
# enable_b.click(enable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component)
|
293 |
+
disable_b.click(disable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component)
|
294 |
+
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component)
|
295 |
+
|
296 |
+
with gr.TabItem("Video Quaity", elem_id="vbench-tab-table", id=2):
|
297 |
+
with gr.Accordion("INSTRUCTION", open=False):
|
298 |
+
citation_button = gr.Textbox(
|
299 |
+
value=QUALITY_CLAIM_TEXT,
|
300 |
+
label="",
|
301 |
+
elem_id="quality-button",
|
302 |
+
lines=2,
|
303 |
+
)
|
304 |
+
with gr.Row():
|
305 |
+
with gr.Column(scale=1.0):
|
306 |
+
# selection for column part:
|
307 |
+
checkbox_group_quality = gr.CheckboxGroup(
|
308 |
+
choices=QUALITY_TAB,
|
309 |
+
value=QUALITY_TAB,
|
310 |
+
label="Evaluation Quality Dimension",
|
311 |
+
interactive=True,
|
312 |
+
)
|
313 |
+
|
314 |
+
data_component_quality = gr.components.Dataframe(
|
315 |
+
value=get_baseline_df_quality,
|
316 |
+
headers=COLUMN_NAMES_QUALITY,
|
317 |
+
type="pandas",
|
318 |
+
datatype=DATA_TITILE_TYPE,
|
319 |
+
interactive=False,
|
320 |
+
visible=True,
|
321 |
+
)
|
322 |
+
|
323 |
+
checkbox_group_quality.change(fn=on_filter_model_size_method_change_quality, inputs=[checkbox_group_quality], outputs=data_component_quality)
|
324 |
+
|
325 |
+
# table 2
|
326 |
+
with gr.TabItem("📝 About", elem_id="mvbench-tab-table", id=3):
|
327 |
+
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
|
328 |
+
|
329 |
+
# table 3
|
330 |
+
with gr.TabItem("🚀 Submit here! ", elem_id="mvbench-tab-table", id=4):
|
331 |
+
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
|
332 |
+
|
333 |
+
with gr.Row():
|
334 |
+
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
|
335 |
+
|
336 |
+
with gr.Row():
|
337 |
+
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")
|
338 |
+
|
339 |
+
with gr.Row():
|
340 |
+
with gr.Column():
|
341 |
+
model_name_textbox = gr.Textbox(
|
342 |
+
label="Model name", placeholder="LaVie"
|
343 |
+
)
|
344 |
+
revision_name_textbox = gr.Textbox(
|
345 |
+
label="Revision Model Name", placeholder="LaVie"
|
346 |
+
)
|
347 |
+
|
348 |
+
with gr.Column():
|
349 |
+
model_link = gr.Textbox(
|
350 |
+
label="Model Link", placeholder="https://huggingface.co/decapoda-research/llama-7b-hf"
|
351 |
+
)
|
352 |
+
|
353 |
+
|
354 |
+
with gr.Column():
|
355 |
+
|
356 |
+
input_file = gr.components.File(label = "Click to Upload a json File", file_count="single", type='binary')
|
357 |
+
submit_button = gr.Button("Submit Eval")
|
358 |
+
|
359 |
+
submission_result = gr.Markdown()
|
360 |
+
submit_button.click(
|
361 |
+
add_new_eval,
|
362 |
+
inputs = [
|
363 |
+
input_file,
|
364 |
+
model_name_textbox,
|
365 |
+
revision_name_textbox,
|
366 |
+
model_link,
|
367 |
+
],
|
368 |
+
)
|
369 |
+
|
370 |
+
|
371 |
+
def refresh_data():
|
372 |
+
value1 = get_baseline_df()
|
373 |
+
return value1
|
374 |
+
|
375 |
+
with gr.Row():
|
376 |
+
data_run = gr.Button("Refresh")
|
377 |
+
data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component)
|
378 |
+
|
379 |
+
|
380 |
+
block.launch()
|