Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,25 @@ from typing import Iterator
|
|
5 |
import gradio as gr
|
6 |
import spaces
|
7 |
import torch
|
8 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
MAX_MAX_NEW_TOKENS = 2048
|
11 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
@@ -17,6 +35,7 @@ if torch.cuda.is_available():
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
18 |
|
19 |
@spaces.GPU
|
|
|
20 |
def generate(
|
21 |
message: str,
|
22 |
chat_history: list[tuple[str, str]],
|
@@ -40,6 +59,10 @@ def generate(
|
|
40 |
input_ids = input_ids.to(model.device)
|
41 |
|
42 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
43 |
generate_kwargs = dict(
|
44 |
{"input_ids": input_ids},
|
45 |
streamer=streamer,
|
@@ -48,6 +71,7 @@ def generate(
|
|
48 |
top_p=top_p,
|
49 |
temperature=temperature,
|
50 |
num_beams=1,
|
|
|
51 |
repetition_penalty=repetition_penalty,
|
52 |
)
|
53 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
@@ -56,11 +80,7 @@ def generate(
|
|
56 |
outputs = []
|
57 |
for text in streamer:
|
58 |
outputs.append(text)
|
59 |
-
|
60 |
-
if "<s>" in generated_text:
|
61 |
-
yield generated_text[:generated_text.index("<s>")+3]
|
62 |
-
break
|
63 |
-
yield generated_text
|
64 |
|
65 |
|
66 |
chat_interface = gr.ChatInterface(
|
|
|
5 |
import gradio as gr
|
6 |
import spaces
|
7 |
import torch
|
8 |
+
from transformers import (
|
9 |
+
AutoModelForCausalLM,
|
10 |
+
AutoTokenizer,
|
11 |
+
StoppingCriteria,
|
12 |
+
StoppingCriteriaList,
|
13 |
+
TextIteratorStreamer,
|
14 |
+
)
|
15 |
+
|
16 |
+
class StoppingCriteriaSub(StoppingCriteria):
|
17 |
+
def __init__(self, stops = [], encounters=1):
|
18 |
+
super().__init__()
|
19 |
+
# self.stops = [stop.to("cuda") for stop in stops]
|
20 |
+
|
21 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
|
22 |
+
last_token = input_ids[0][-1]
|
23 |
+
for stop in self.stops:
|
24 |
+
if tokenizer.decode(stop) == tokenizer.decode(last_token):
|
25 |
+
return True
|
26 |
+
return False
|
27 |
|
28 |
MAX_MAX_NEW_TOKENS = 2048
|
29 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
|
|
35 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
36 |
|
37 |
@spaces.GPU
|
38 |
+
User
|
39 |
def generate(
|
40 |
message: str,
|
41 |
chat_history: list[tuple[str, str]],
|
|
|
59 |
input_ids = input_ids.to(model.device)
|
60 |
|
61 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
62 |
+
stop_words = ["</s>"]
|
63 |
+
stop_words_ids = [tokenizer(stop_word, return_tensors='pt', add_special_tokens=False)['input_ids'].squeeze() for stop_word in stop_words]
|
64 |
+
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
65 |
+
|
66 |
generate_kwargs = dict(
|
67 |
{"input_ids": input_ids},
|
68 |
streamer=streamer,
|
|
|
71 |
top_p=top_p,
|
72 |
temperature=temperature,
|
73 |
num_beams=1,
|
74 |
+
stopping_criteria=stopping_criteria,
|
75 |
repetition_penalty=repetition_penalty,
|
76 |
)
|
77 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
|
|
80 |
outputs = []
|
81 |
for text in streamer:
|
82 |
outputs.append(text)
|
83 |
+
yield "".join(outputs)
|
|
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
chat_interface = gr.ChatInterface(
|