|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import inspect |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import PIL |
|
import torch |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection |
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import LoraLoaderMixin |
|
from diffusers.models import AutoencoderKL |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.models.unets.unet_i2vgen_xl import I2VGenXLUNet |
|
from diffusers.schedulers import DDIMScheduler |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
BaseOutput, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
|
|
from pnp_utils import register_time |
|
from utils import load_ddim_latents_at_t |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import I2VGenXLPipeline |
|
|
|
>>> pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16") |
|
>>> pipeline.enable_model_cpu_offload() |
|
|
|
>>> image_url = "https://github.com/ali-vilab/i2vgen-xl/blob/main/data/test_images/img_0009.png?raw=true" |
|
>>> image = load_image(image_url).convert("RGB") |
|
|
|
>>> prompt = "Papers were floating in the air on a table in the library" |
|
>>> negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms" |
|
>>> generator = torch.manual_seed(8888) |
|
|
|
>>> frames = pipeline( |
|
... prompt=prompt, |
|
... image=image, |
|
... num_inference_steps=50, |
|
... negative_prompt=negative_prompt, |
|
... guidance_scale=9.0, |
|
... generator=generator |
|
... ).frames[0] |
|
>>> video_path = export_to_gif(frames, "i2v.gif") |
|
``` |
|
""" |
|
|
|
|
|
|
|
def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"): |
|
batch_size, channels, num_frames, height, width = video.shape |
|
outputs = [] |
|
for batch_idx in range(batch_size): |
|
batch_vid = video[batch_idx].permute(1, 0, 2, 3) |
|
batch_output = processor.postprocess(batch_vid, output_type) |
|
|
|
outputs.append(batch_output) |
|
|
|
if output_type == "np": |
|
outputs = np.stack(outputs) |
|
|
|
elif output_type == "pt": |
|
outputs = torch.stack(outputs) |
|
|
|
elif not output_type == "pil": |
|
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil]") |
|
|
|
return outputs |
|
|
|
|
|
@dataclass |
|
class I2VGenXLPipelineOutput(BaseOutput): |
|
r""" |
|
Output class for image-to-video pipeline. |
|
|
|
Args: |
|
frames (`List[np.ndarray]` or `torch.FloatTensor`) |
|
List of denoised frames (essentially images) as NumPy arrays of shape `(height, width, num_channels)` or as |
|
a `torch` tensor. The length of the list denotes the video length (the number of frames). |
|
""" |
|
|
|
frames: Union[List[np.ndarray], torch.FloatTensor] |
|
|
|
|
|
|
|
@dataclass |
|
class StableVideoDiffusionInversionPipelineOutput(BaseOutput): |
|
""" |
|
Output class for Stable Diffusion pipelines. |
|
|
|
Args: |
|
latents (`torch.FloatTensor`) |
|
inverted latents tensor |
|
images (`List[PIL.Image.Image]` or `np.ndarray`) |
|
List of denoised PIL images of length `num_timesteps * batch_size` or numpy array of shape `(num_timesteps, |
|
batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the |
|
diffusion pipeline. |
|
""" |
|
|
|
inverted_latents: torch.FloatTensor |
|
|
|
|
|
|
|
class I2VGenXLPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for image-to-video generation as proposed in [I2VGenXL](https://i2vgen-xl.github.io/). |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer (`CLIPTokenizer`): |
|
A [`~transformers.CLIPTokenizer`] to tokenize text. |
|
unet ([`I2VGenXLUNet`]): |
|
A [`I2VGenXLUNet`] to denoise the encoded video latents. |
|
scheduler ([`DDIMScheduler`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
image_encoder: CLIPVisionModelWithProjection, |
|
feature_extractor: CLIPImageProcessor, |
|
unet: I2VGenXLUNet, |
|
scheduler: DDIMScheduler, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
image_encoder=image_encoder, |
|
feature_extractor=feature_extractor, |
|
unet=unet, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=False) |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_videos_per_prompt, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_videos_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
if clip_skip is None: |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
else: |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1) |
|
|
|
|
|
if self.do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
|
|
if clip_skip is None: |
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
else: |
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
negative_prompt_embeds = self.text_encoder.text_model.final_layer_norm(negative_prompt_embeds) |
|
|
|
if self.do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) |
|
|
|
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
def _encode_image(self, image, device, num_videos_per_prompt): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.image_processor.pil_to_numpy(image) |
|
image = self.image_processor.numpy_to_pt(image) |
|
|
|
|
|
image = self.feature_extractor( |
|
images=image, |
|
do_normalize=True, |
|
do_center_crop=False, |
|
do_resize=False, |
|
do_rescale=False, |
|
return_tensors="pt", |
|
).pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
image_embeddings = self.image_encoder(image).image_embeds |
|
image_embeddings = image_embeddings.unsqueeze(1) |
|
|
|
|
|
bs_embed, seq_len, _ = image_embeddings.shape |
|
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) |
|
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) |
|
|
|
if self.do_classifier_free_guidance: |
|
negative_image_embeddings = torch.zeros_like(image_embeddings) |
|
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings]) |
|
|
|
return image_embeddings |
|
|
|
def decode_latents(self, latents, decode_chunk_size=None): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
|
|
batch_size, channels, num_frames, height, width = latents.shape |
|
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) |
|
|
|
if decode_chunk_size is not None: |
|
frames = [] |
|
for i in range(0, latents.shape[0], decode_chunk_size): |
|
frame = self.vae.decode(latents[i: i + decode_chunk_size]).sample |
|
frames.append(frame) |
|
image = torch.cat(frames, dim=0) |
|
else: |
|
image = self.vae.decode(latents).sample |
|
|
|
decode_shape = (batch_size, num_frames, -1) + image.shape[2:] |
|
video = image[None, :].reshape(decode_shape).permute(0, 2, 1, 3, 4) |
|
|
|
|
|
video = video.float() |
|
return video |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
image, |
|
height, |
|
width, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if ( |
|
not isinstance(image, torch.Tensor) |
|
and not isinstance(image, PIL.Image.Image) |
|
and not isinstance(image, list) |
|
): |
|
raise ValueError( |
|
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" |
|
f" {type(image)}" |
|
) |
|
|
|
def prepare_image_latents( |
|
self, |
|
image, |
|
device, |
|
num_frames, |
|
num_videos_per_prompt, |
|
): |
|
image = image.to(device=device) |
|
image_latents = self.vae.encode(image).latent_dist.sample() |
|
image_latents = image_latents * self.vae.config.scaling_factor |
|
|
|
|
|
image_latents = image_latents.unsqueeze(2) |
|
|
|
|
|
|
|
frame_position_mask = [] |
|
for frame_idx in range(num_frames - 1): |
|
scale = (frame_idx + 1) / (num_frames - 1) |
|
frame_position_mask.append(torch.ones_like(image_latents[:, :, :1]) * scale) |
|
if frame_position_mask: |
|
frame_position_mask = torch.cat(frame_position_mask, dim=2) |
|
image_latents = torch.cat([image_latents, frame_position_mask], dim=2) |
|
|
|
|
|
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1, 1) |
|
|
|
if self.do_classifier_free_guidance: |
|
image_latents = torch.cat([image_latents] * 2) |
|
|
|
return image_latents |
|
|
|
|
|
def encode_vae_video( |
|
self, |
|
video: List[PIL.Image.Image], |
|
device, |
|
height: int = 576, |
|
width: int = 1024, |
|
): |
|
|
|
|
|
dtype = next(self.vae.parameters()).dtype |
|
n_frames = len(video) |
|
video_latents = [] |
|
for i in range(0, n_frames): |
|
frame = video[i] |
|
resized_frame = _center_crop_wide(frame, (width, height)) |
|
frame = self.image_processor.preprocess(resized_frame) |
|
frame = frame.to(device=device, dtype=dtype) |
|
image_latents = self.vae.encode(frame).latent_dist.sample() |
|
image_latents = image_latents * self.vae.config.scaling_factor |
|
logger.debug(f"image_latents.shape: {image_latents.shape}") |
|
image_latents = image_latents.squeeze(0) |
|
video_latents.append(image_latents) |
|
video_latents = torch.stack(video_latents) |
|
video_latents = video_latents.reshape(1, n_frames, *video_latents.shape[1:]) |
|
video_latents = video_latents.permute(0, 2, 1, 3, 4) |
|
video_latents = video_latents.to(device=device, dtype=dtype) |
|
|
|
return video_latents |
|
|
|
|
|
def prepare_latents( |
|
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
num_frames, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
logger.debug(f"latents.shape: {latents.shape}") |
|
logger.debug(f"init_noise_sigma: {self.scheduler.init_noise_sigma}") |
|
return latents |
|
|
|
|
|
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): |
|
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. |
|
|
|
The suffixes after the scaling factors represent the stages where they are being applied. |
|
|
|
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values |
|
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. |
|
|
|
Args: |
|
s1 (`float`): |
|
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
s2 (`float`): |
|
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. |
|
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. |
|
""" |
|
if not hasattr(self, "unet"): |
|
raise ValueError("The pipeline must have `unet` for using FreeU.") |
|
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) |
|
|
|
|
|
def disable_freeu(self): |
|
"""Disables the FreeU mechanism if enabled.""" |
|
self.unet.disable_freeu() |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
image: PipelineImageInput = None, |
|
height: Optional[int] = 704, |
|
width: Optional[int] = 1280, |
|
target_fps: Optional[int] = 16, |
|
num_frames: int = 16, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 9.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
eta: float = 0.0, |
|
num_videos_per_prompt: Optional[int] = 1, |
|
decode_chunk_size: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: Optional[int] = 1, |
|
ddim_init_latents_t_idx: Optional[int] = 1, |
|
): |
|
r""" |
|
The call function to the pipeline for image-to-video generation with [`I2VGenXLPipeline`]. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): |
|
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with |
|
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
target_fps (`int`, *optional*): |
|
Frames per second. The rate at which the generated images shall be exported to a video after generation. This is also used as a "micro-condition" while generation. |
|
num_frames (`int`, *optional*): |
|
The number of video frames to generate. |
|
num_inference_steps (`int`, *optional*): |
|
The number of denoising steps. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
eta (`float`, *optional*): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
num_videos_per_prompt (`int`, *optional*): |
|
The number of images to generate per prompt. |
|
decode_chunk_size (`int`, *optional*): |
|
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency |
|
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once |
|
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] is |
|
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
logger.info(f"height: {height}, width: {width}") |
|
|
|
|
|
self.check_inputs(prompt, image, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds) |
|
logger.info(f"Prompt: {prompt}") |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
self._guidance_scale = guidance_scale |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_videos_per_prompt, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=clip_skip, |
|
) |
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
|
|
|
|
cropped_image = _center_crop_wide(image, (width, width)) |
|
cropped_image = _resize_bilinear( |
|
cropped_image, (self.feature_extractor.crop_size["width"], self.feature_extractor.crop_size["height"]) |
|
) |
|
image_embeddings = self._encode_image(cropped_image, device, num_videos_per_prompt) |
|
|
|
|
|
resized_image = _center_crop_wide(image, (width, height)) |
|
image = self.image_processor.preprocess(resized_image).to(device=device, dtype=image_embeddings.dtype) |
|
image_latents = self.prepare_image_latents( |
|
image, |
|
device=device, |
|
num_frames=num_frames, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
) |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
fps_tensor = torch.tensor([target_fps, target_fps]).to(device) |
|
else: |
|
fps_tensor = torch.tensor([target_fps]).to(device) |
|
fps_tensor = fps_tensor.repeat(batch_size * num_videos_per_prompt, 1).ravel() |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
self.scheduler.timesteps = self.scheduler.timesteps[ddim_init_latents_t_idx:] |
|
timesteps = self.scheduler.timesteps |
|
logger.info(f"self.scheduler: {self.scheduler}") |
|
logger.info(f"timesteps: {timesteps}") |
|
logger.info(f"Sampling starts from latents_at_t={self.scheduler.timesteps[0]}") |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
num_frames, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
fps=fps_tensor, |
|
image_latents=image_latents, |
|
image_embeddings=image_embeddings, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
logger.debug(f"doing classifier free guidance with guidance_scale: {guidance_scale}") |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
batch_size, channel, frames, width, height = latents.shape |
|
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height) |
|
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
latents = latents[None, :].reshape(batch_size, frames, channel, width, height).permute(0, 2, 1, 3, 4) |
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if output_type == "latent": |
|
return I2VGenXLPipelineOutput(frames=latents) |
|
|
|
video_tensor = self.decode_latents(latents, decode_chunk_size=decode_chunk_size) |
|
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (video,) |
|
|
|
return I2VGenXLPipelineOutput(frames=video) |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def sample_with_pnp( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
image: PipelineImageInput = None, |
|
height: Optional[int] = 704, |
|
width: Optional[int] = 1280, |
|
target_fps: Optional[int] = 16, |
|
num_frames: int = 16, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 9.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
eta: float = 0.0, |
|
num_videos_per_prompt: Optional[int] = 1, |
|
decode_chunk_size: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: Optional[int] = 1, |
|
ddim_init_latents_t_idx: Optional[int] = 1, |
|
ddim_inv_latents_path: Optional[str] = None, |
|
ddim_inv_prompt: Union[str, List[str]] = None, |
|
ddim_inv_1st_frame: PipelineImageInput = None, |
|
): |
|
r""" |
|
The call function to the pipeline for image-to-video generation with [`I2VGenXLPipeline`]. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): |
|
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with |
|
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
target_fps (`int`, *optional*): |
|
Frames per second. The rate at which the generated images shall be exported to a video after generation. This is also used as a "micro-condition" while generation. |
|
num_frames (`int`, *optional*): |
|
The number of video frames to generate. |
|
num_inference_steps (`int`, *optional*): |
|
The number of denoising steps. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
eta (`float`, *optional*): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
num_videos_per_prompt (`int`, *optional*): |
|
The number of images to generate per prompt. |
|
decode_chunk_size (`int`, *optional*): |
|
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency |
|
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once |
|
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] is |
|
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
logger.info(f"height: {height}, width: {width}") |
|
|
|
|
|
self.check_inputs(prompt, image, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds) |
|
logger.info(f"Prompt: {prompt}") |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
|
|
assert len(ddim_inv_prompt) == len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
self._guidance_scale = guidance_scale |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_videos_per_prompt, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=clip_skip, |
|
) |
|
|
|
|
|
|
|
ddim_inv_prompt_embeds, _ = self.encode_prompt( |
|
ddim_inv_prompt, |
|
device, |
|
num_videos_per_prompt, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=clip_skip, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds_all = torch.cat([ddim_inv_prompt_embeds, negative_prompt_embeds, prompt_embeds]) |
|
else: |
|
prompt_embeds_all = torch.cat([ddim_inv_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
|
|
|
|
cropped_image = _center_crop_wide(image, (width, width)) |
|
cropped_image = _resize_bilinear( |
|
cropped_image, (self.feature_extractor.crop_size["width"], self.feature_extractor.crop_size["height"]) |
|
) |
|
image_embeddings = self._encode_image(cropped_image, device, num_videos_per_prompt) |
|
|
|
|
|
resized_image = _center_crop_wide(image, (width, height)) |
|
image = self.image_processor.preprocess(resized_image).to(device=device, dtype=image_embeddings.dtype) |
|
image_latents = self.prepare_image_latents( |
|
image, |
|
device=device, |
|
num_frames=num_frames, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
) |
|
|
|
|
|
|
|
cropped_image = _center_crop_wide(ddim_inv_1st_frame, (width, width)) |
|
cropped_image = _resize_bilinear( |
|
cropped_image, (self.feature_extractor.crop_size["width"], self.feature_extractor.crop_size["height"]) |
|
) |
|
_embeddings = self._encode_image(cropped_image, device, num_videos_per_prompt) |
|
if self.do_classifier_free_guidance: |
|
ddim_inv_1st_frame_embeddings = _embeddings.chunk(2)[1] |
|
else: |
|
ddim_inv_1st_frame_embeddings = _embeddings |
|
|
|
|
|
resized_image = _center_crop_wide(ddim_inv_1st_frame, (width, height)) |
|
ddim_inv_1st_frame = self.image_processor.preprocess(resized_image).to(device=device, dtype=image_embeddings.dtype) |
|
_latents = self.prepare_image_latents( |
|
ddim_inv_1st_frame, |
|
device=device, |
|
num_frames=num_frames, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
) |
|
if self.do_classifier_free_guidance: |
|
ddim_inv_1st_frame_latents = _latents.chunk(2)[1] |
|
else: |
|
ddim_inv_1st_frame_latents = _latents |
|
|
|
image_embeddings_all = torch.cat([ddim_inv_1st_frame_embeddings, image_embeddings]) |
|
image_latents_all = torch.cat([ddim_inv_1st_frame_latents, image_latents]) |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
fps_tensor = torch.tensor([target_fps, target_fps, target_fps]).to(device) |
|
else: |
|
fps_tensor = torch.tensor([target_fps, target_fps]).to(device) |
|
fps_tensor = fps_tensor.repeat(batch_size * num_videos_per_prompt, 1).ravel() |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
self.scheduler.timesteps = self.scheduler.timesteps[ddim_init_latents_t_idx:] |
|
timesteps = self.scheduler.timesteps |
|
logger.info(f"self.scheduler: {self.scheduler}") |
|
logger.info(f"timesteps: {timesteps}") |
|
logger.info(f"Sampling starts from latents_at_t={self.scheduler.timesteps[0]}") |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
num_frames, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
ddim_inv_latents_at_t = load_ddim_latents_at_t(t, ddim_inv_latents_path).to(self.device) |
|
if self.do_classifier_free_guidance: |
|
latent_model_input = torch.cat([ddim_inv_latents_at_t, latents, latents]) |
|
else: |
|
latent_model_input = torch.cat([ddim_inv_latents_at_t, latents]) |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
|
|
register_time(self, t.item()) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds_all, |
|
fps=fps_tensor, |
|
image_latents=image_latents_all, |
|
image_embeddings=image_embeddings_all, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
_noise_pred_ddim_inv, noise_pred_negative, noise_pred_editing = noise_pred.chunk(3) |
|
logger.debug(f"doing classifier free guidance with guidance_scale: {guidance_scale}") |
|
noise_pred = noise_pred_negative + guidance_scale * (noise_pred_editing - noise_pred_negative) |
|
else: |
|
_noise_pred_ddim_inv, noise_pred_editing = noise_pred.chunk(2) |
|
noise_pred = noise_pred_editing |
|
|
|
|
|
batch_size, channel, frames, width, height = latents.shape |
|
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height) |
|
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
latents = latents[None, :].reshape(batch_size, frames, channel, width, height).permute(0, 2, 1, 3, 4) |
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if output_type == "latent": |
|
return I2VGenXLPipelineOutput(frames=latents) |
|
|
|
video_tensor = self.decode_latents(latents, decode_chunk_size=decode_chunk_size) |
|
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (video,) |
|
|
|
return I2VGenXLPipelineOutput(frames=video) |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def invert( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
image: PipelineImageInput = None, |
|
height: Optional[int] = 704, |
|
width: Optional[int] = 1280, |
|
target_fps: Optional[int] = 16, |
|
num_frames: int = 16, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 9.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
eta: float = 0.0, |
|
num_videos_per_prompt: Optional[int] = 1, |
|
decode_chunk_size: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: Optional[int] = 1, |
|
output_dir: Optional[str] = None, |
|
): |
|
r""" |
|
The call function to the pipeline for image-to-video generation with [`I2VGenXLPipeline`]. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): |
|
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with |
|
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
target_fps (`int`, *optional*): |
|
Frames per second. The rate at which the generated images shall be exported to a video after generation. This is also used as a "micro-condition" while generation. |
|
num_frames (`int`, *optional*): |
|
The number of video frames to generate. |
|
num_inference_steps (`int`, *optional*): |
|
The number of denoising steps. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
eta (`float`, *optional*): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
num_videos_per_prompt (`int`, *optional*): |
|
The number of images to generate per prompt. |
|
decode_chunk_size (`int`, *optional*): |
|
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency |
|
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once |
|
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] is |
|
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
logger.info(f"height: {height}, width: {width}") |
|
|
|
|
|
self.check_inputs(prompt, image, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
logger.info(f"prompt: {prompt}") |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
self._guidance_scale = guidance_scale |
|
logger.debug(f"self._guidance_scale: {self._guidance_scale}") |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_videos_per_prompt, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=clip_skip, |
|
) |
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
|
|
|
|
cropped_image = _center_crop_wide(image, (width, width)) |
|
cropped_image = _resize_bilinear( |
|
cropped_image, (self.feature_extractor.crop_size["width"], self.feature_extractor.crop_size["height"]) |
|
) |
|
image_embeddings = self._encode_image(cropped_image, device, num_videos_per_prompt) |
|
|
|
|
|
resized_image = _center_crop_wide(image, (width, height)) |
|
image = self.image_processor.preprocess(resized_image).to(device=device, dtype=image_embeddings.dtype) |
|
image_latents = self.prepare_image_latents( |
|
image, |
|
device=device, |
|
num_frames=num_frames, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
) |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
fps_tensor = torch.tensor([target_fps, target_fps]).to(device) |
|
else: |
|
fps_tensor = torch.tensor([target_fps]).to(device) |
|
fps_tensor = fps_tensor.repeat(batch_size * num_videos_per_prompt, 1).ravel() |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
logger.debug(f"self.scheduler: {self.scheduler}") |
|
logger.debug(f"timesteps: {timesteps}") |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
num_frames, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
inverted_latents = [] |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
logger.debug(f"image_latents.shape: {image_latents.shape}") |
|
logger.debug(f"latent_model_input.shape: {latent_model_input.shape}") |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
fps=fps_tensor, |
|
image_latents=image_latents, |
|
image_embeddings=image_embeddings, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
logger.debug(f"do_classifier_free_guidance with guidance_scale: {guidance_scale}") |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
batch_size, channel, frames, width, height = latents.shape |
|
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height) |
|
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
latents = latents[None, :].reshape(batch_size, frames, channel, width, height).permute(0, 2, 1, 3, 4) |
|
|
|
inverted_latents.append(latents.detach().clone()) |
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
torch.save( |
|
latents.detach().clone(), |
|
os.path.join(output_dir, f"ddim_latents_{t}.pt"), |
|
) |
|
logger.info(f"saved noisy latents at t={t} to {output_dir}") |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
|
|
inverted_latents = torch.stack(list(reversed(inverted_latents)), 1) |
|
|
|
if not return_dict: |
|
return inverted_latents |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
|
|
return StableVideoDiffusionInversionPipelineOutput(inverted_latents=inverted_latents) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_pt_to_pil(image: Union[torch.Tensor, List[torch.Tensor]]): |
|
if isinstance(image, list) and isinstance(image[0], torch.Tensor): |
|
image = torch.cat(image, 0) |
|
|
|
if isinstance(image, torch.Tensor): |
|
if image.ndim == 3: |
|
image = image.unsqueeze(0) |
|
|
|
image_numpy = VaeImageProcessor.pt_to_numpy(image) |
|
image_pil = VaeImageProcessor.numpy_to_pil(image_numpy) |
|
image = image_pil |
|
|
|
return image |
|
|
|
|
|
def _resize_bilinear( |
|
image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]], |
|
resolution: Tuple[int, int] |
|
): |
|
|
|
image = _convert_pt_to_pil(image) |
|
|
|
if isinstance(image, list): |
|
image = [u.resize(resolution, PIL.Image.BILINEAR) for u in image] |
|
else: |
|
image = image.resize(resolution, PIL.Image.BILINEAR) |
|
return image |
|
|
|
|
|
def _center_crop_wide( |
|
image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]], |
|
resolution: Tuple[int, int] |
|
): |
|
|
|
image = _convert_pt_to_pil(image) |
|
|
|
if isinstance(image, list): |
|
scale = min(image[0].size[0] / resolution[0], image[0].size[1] / resolution[1]) |
|
image = [u.resize((round(u.width // scale), round(u.height // scale)), resample=PIL.Image.BOX) for u in image] |
|
|
|
|
|
x1 = (image[0].width - resolution[0]) // 2 |
|
y1 = (image[0].height - resolution[1]) // 2 |
|
image = [u.crop((x1, y1, x1 + resolution[0], y1 + resolution[1])) for u in image] |
|
return image |
|
else: |
|
scale = min(image.size[0] / resolution[0], image.size[1] / resolution[1]) |
|
image = image.resize((round(image.width // scale), round(image.height // scale)), resample=PIL.Image.BOX) |
|
x1 = (image.width - resolution[0]) // 2 |
|
y1 = (image.height - resolution[1]) // 2 |
|
image = image.crop((x1, y1, x1 + resolution[0], y1 + resolution[1])) |
|
return image |
|
|