Spaces:
Running
on
Zero
Running
on
Zero
from abc import ABC, abstractmethod | |
import torch | |
import torch.nn as nn | |
from .multimodal_encoder.builder import build_vision_tower | |
from .multimodal_resampler.builder import build_vision_resampler | |
from .multimodal_projector.builder import build_vision_projector | |
from oryx.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
import ast | |
import torch.distributed as dist | |
class OryxMetaModel: | |
def __init__(self, config): | |
super(OryxMetaModel, self).__init__(config) | |
if hasattr(config, "mm_vision_tower"): | |
self.vision_tower = build_vision_tower(config, delay_load=True) | |
self.vision_resampler = build_vision_resampler(config, vision_tower=self.vision_tower) | |
self.mm_projector = build_vision_projector(config, vision_cfg=self.vision_tower.config) | |
def get_vision_tower(self): | |
vision_tower = getattr(self, 'vision_tower', None) | |
if type(vision_tower) is list: | |
vision_tower = vision_tower[0] | |
return vision_tower | |
def initialize_vision_modules(self, model_args, fsdp=None): | |
vision_tower = model_args.vision_tower | |
mm_vision_select_layer = model_args.mm_vision_select_layer | |
mm_vision_select_feature = model_args.mm_vision_select_feature | |
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter | |
self.config.mm_vision_tower = vision_tower | |
if self.get_vision_tower() is None: | |
vision_tower = build_vision_tower(model_args) | |
vision_resampler = build_vision_resampler(model_args, vision_tower=vision_tower) | |
## Get the mm_spatial_pool_mode and mm_spatial_pool_stride | |
for k, v in vision_resampler.config.items(): | |
setattr(self.config, k, v) | |
if fsdp is not None and len(fsdp) > 0: | |
self.vision_tower = [vision_tower] | |
self.vision_resampler = [vision_resampler] | |
else: | |
self.vision_tower = vision_tower | |
self.vision_resampler = vision_resampler | |
else: | |
if fsdp is not None and len(fsdp) > 0: | |
vision_resampler = self.vision_resampler[0] | |
vision_tower = self.vision_tower[0] | |
else: | |
vision_resampler = self.vision_resampler | |
vision_tower = self.vision_tower | |
vision_tower.load_model() | |
# In case it is frozen by LoRA | |
for p in self.vision_resampler.parameters(): | |
p.requires_grad = True | |
self.config.use_mm_proj = True | |
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') | |
self.config.mm_hidden_size = getattr(vision_resampler, 'hidden_size', vision_tower.hidden_size) | |
self.config.mm_vision_select_layer = mm_vision_select_layer | |
self.config.mm_vision_select_feature = mm_vision_select_feature | |
if getattr(self, 'mm_projector', None) is None: | |
self.mm_projector = build_vision_projector(self.config, vision_cfg=vision_tower.config) | |
else: | |
for p in self.mm_projector.parameters(): | |
p.requires_grad = True | |
if pretrain_mm_mlp_adapter is not None: | |
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') | |
def get_w(weights, keyword): | |
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} | |
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) | |
incompatible_keys = self.vision_resampler.load_state_dict(get_w(mm_projector_weights, 'vision_resampler'), strict=False) | |
print(incompatible_keys) | |
class OryxMetaForCausalLM(ABC): | |
def get_model(self): | |
pass | |
def get_vision_tower(self): | |
return self.get_model().get_vision_tower() | |
def prepare_inputs_labels_for_multimodal( | |
self, input_ids, position_ids, attention_mask, past_key_values, labels, | |
images, modalities, image_sizes=None, images_highres=None): | |
# print(modalities, len(images), len(images_highres), len(input_ids)) | |
vision_tower = self.get_vision_tower() | |
if vision_tower is None or images is None or input_ids.shape[1] == 1: | |
return input_ids, position_ids, attention_mask, past_key_values, None, labels | |
if isinstance(modalities, str): | |
modalities = [modalities] | |
video_idx_in_batch = [] | |
for modal in range(len(modalities)): | |
if 'video' in modalities[modal]: | |
video_idx_in_batch.append(modal) | |
# Fix training with deepspeed zero3 | |
num_modality = len(modalities) | |
# try: | |
# world_size = dist.get_world_size() | |
# tensor_in = torch.zeros(1, dtype=torch.int64, device=images[0].device).fill_(num_modality) | |
# tensor_out = torch.zeros(world_size, dtype=torch.int64, device=images[0].device) | |
# dist.all_gather_into_tensor(tensor_out, tensor_in) | |
# max_num_modality = tensor_out.max().item() | |
# except: | |
max_num_modality = num_modality | |
aimg = images[-1] | |
lowres_img = [] | |
for idx, img_feat in enumerate(images): | |
if idx in video_idx_in_batch: | |
img_feat = aimg.new(1, 3, 128, 128).fill_(0) | |
lowres_img.append(img_feat) | |
# Fix training with deepspeed zero3 | |
if max_num_modality > num_modality: | |
for _ in range(max_num_modality - num_modality): | |
lowres_img.append(aimg.new(1, 3, 64, 64).fill_(0)) | |
images_highres.append(aimg.new(1, 3, 64, 64).fill_(0)) | |
modalities.append('image') | |
lowres_img_features, lowres_img_sizes = self.get_model().get_vision_tower()(lowres_img) | |
highres_img_features = [] | |
highres_img_sizes = [] | |
for idx, img_feat in enumerate(images_highres): | |
if img_feat.ndim == 5: | |
img_feat = img_feat.squeeze(1) | |
highres_img_feature, highres_img_size = self.get_model().get_vision_tower()(img_feat) | |
highres_img_features.append(highres_img_feature) | |
highres_img_sizes.append(highres_img_size) | |
image_features = [] | |
for idx in range(len(modalities)): | |
img_feat_highres, img_size_highres = self.get_model().vision_resampler(highres_img_features[idx], | |
modalities[idx], | |
highres_img_sizes[idx]) | |
img_feat_lowres, img_size_lowres = self.get_model().vision_resampler(lowres_img_features[idx], | |
modalities[idx], | |
lowres_img_sizes[idx]) | |
img_feat = self.get_model().mm_projector(img_feat_lowres, | |
img_size_lowres, | |
img_feat_highres, | |
img_size_highres, | |
modalities[idx]) | |
image_features.append(img_feat.flatten(0, 1)) | |
if max_num_modality > num_modality: | |
image_features = image_features[:num_modality] | |
modalities = modalities[:num_modality] | |
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): | |
raise NotImplementedError | |
# Let's just add dummy tensors if they do not exist, | |
# it is a headache to deal with None all the time. | |
# But it is not ideal, and if you have a better idea, | |
# please open an issue / submit a PR, thanks. | |
_labels = labels | |
_position_ids = position_ids | |
_attention_mask = attention_mask | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) | |
else: | |
attention_mask = attention_mask.bool() | |
if position_ids is None: | |
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) | |
if labels is None: | |
labels = torch.full_like(input_ids, IGNORE_INDEX) | |
# remove the padding using attention_mask -- FIXME | |
_input_ids = input_ids | |
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] | |
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] | |
new_input_embeds = [] | |
new_labels = [] | |
cur_image_idx = 0 | |
for batch_idx, cur_input_ids in enumerate(input_ids): | |
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() | |
if num_images == 0: | |
cur_image_features = image_features[cur_image_idx] | |
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) | |
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) | |
new_input_embeds.append(cur_input_embeds) | |
new_labels.append(labels[batch_idx]) | |
cur_image_idx += 1 | |
continue | |
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] | |
cur_input_ids_noim = [] | |
cur_labels = labels[batch_idx] | |
cur_labels_noim = [] | |
for i in range(len(image_token_indices) - 1): | |
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) | |
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) | |
split_sizes = [x.shape[0] for x in cur_labels_noim] | |
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) | |
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) | |
cur_new_input_embeds = [] | |
cur_new_labels = [] | |
for i in range(num_images + 1): | |
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) | |
cur_new_labels.append(cur_labels_noim[i]) | |
if i < num_images: | |
cur_image_features = image_features[cur_image_idx] | |
cur_image_idx += 1 | |
cur_new_input_embeds.append(cur_image_features) | |
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) | |
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] | |
cur_new_input_embeds = torch.cat(cur_new_input_embeds) | |
cur_new_labels = torch.cat(cur_new_labels) | |
new_input_embeds.append(cur_new_input_embeds) | |
new_labels.append(cur_new_labels) | |
# Truncate sequences to max length as image embeddings can make the sequence longer | |
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) | |
modality_max_length = getattr(self.config, 'modality_max_length', None) | |
if modality_max_length is None or modality_max_length == "None": | |
if tokenizer_model_max_length is not None: | |
# if new_input_embeds[0] > tokenizer_model_max_length: | |
# print(f"Embeds length ({new_input_embeds.shape[0]}) larger than max length") | |
new_input_embeds =[x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)] | |
new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)] | |
else: | |
modality_max_length = ast.literal_eval(modality_max_length) | |
modality_max_length_dict = {"image": modality_max_length[0], "text": modality_max_length[1], "video": modality_max_length[2]} | |
new_input_embeds =[x[: modality_max_length_dict[modality]] for x, modality in zip(new_input_embeds, modalities)] | |
new_labels = [x[: modality_max_length_dict[modality]] for x, modality in zip(new_labels, modalities)] | |
# Combine them | |
max_len = max(x.shape[0] for x in new_input_embeds) | |
batch_size = len(new_input_embeds) | |
new_input_embeds_padded = [] | |
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) | |
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) | |
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) | |
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): | |
cur_len = cur_new_embed.shape[0] | |
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": | |
new_input_embeds_padded.append(torch.cat(( | |
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), | |
cur_new_embed | |
), dim=0)) | |
if cur_len > 0: | |
new_labels_padded[i, -cur_len:] = cur_new_labels | |
attention_mask[i, -cur_len:] = True | |
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) | |
else: | |
new_input_embeds_padded.append(torch.cat(( | |
cur_new_embed, | |
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) | |
), dim=0)) | |
if cur_len > 0: | |
new_labels_padded[i, :cur_len] = cur_new_labels | |
attention_mask[i, :cur_len] = True | |
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) | |
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) | |
if _labels is None: | |
new_labels = None | |
else: | |
new_labels = new_labels_padded | |
if _attention_mask is None: | |
attention_mask = None | |
else: | |
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) | |
if _position_ids is None: | |
position_ids = None | |
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels | |
def initialize_vision_tokenizer(self, model_args, tokenizer): | |
if model_args.mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if model_args.mm_use_im_start_end: | |
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = self.get_input_embeddings().weight.data | |
output_embeddings = self.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = True | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |
if model_args.pretrain_mm_mlp_adapter: | |
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') | |
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] | |
assert num_new_tokens == 2 | |
if input_embeddings.shape == embed_tokens_weight.shape: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] | |
elif embed_tokens_weight.shape[0] == num_new_tokens: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight | |
else: | |
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") | |
elif model_args.mm_use_im_patch_token: | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = False | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False |