Spaces:
Running
on
Zero
Running
on
Zero
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright: | |
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
import torch | |
import logging | |
import logging.handlers | |
import transformers | |
from ola.constants import LOGDIR | |
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**" | |
moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN." | |
handler = None | |
def build_logger(logger_name, logger_filename): | |
global handler | |
formatter = logging.Formatter( | |
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", | |
datefmt="%Y-%m-%d %H:%M:%S", | |
) | |
# Set the format of root handlers | |
if not logging.getLogger().handlers: | |
logging.basicConfig(level=logging.INFO) | |
logging.getLogger().handlers[0].setFormatter(formatter) | |
# Redirect stdout and stderr to loggers | |
stdout_logger = logging.getLogger("stdout") | |
stdout_logger.setLevel(logging.INFO) | |
sl = StreamToLogger(stdout_logger, logging.INFO) | |
sys.stdout = sl | |
stderr_logger = logging.getLogger("stderr") | |
stderr_logger.setLevel(logging.ERROR) | |
sl = StreamToLogger(stderr_logger, logging.ERROR) | |
sys.stderr = sl | |
# Get logger | |
logger = logging.getLogger(logger_name) | |
logger.setLevel(logging.INFO) | |
# Add a file handler for all loggers | |
if handler is None: | |
os.makedirs(LOGDIR, exist_ok=True) | |
filename = os.path.join(LOGDIR, logger_filename) | |
handler = logging.handlers.TimedRotatingFileHandler( | |
filename, when='D', utc=True, encoding='UTF-8') | |
handler.setFormatter(formatter) | |
for name, item in logging.root.manager.loggerDict.items(): | |
if isinstance(item, logging.Logger): | |
item.addHandler(handler) | |
return logger | |
class StreamToLogger(object): | |
""" | |
Fake file-like stream object that redirects writes to a logger instance. | |
""" | |
def __init__(self, logger, log_level=logging.INFO): | |
self.terminal = sys.stdout | |
self.logger = logger | |
self.log_level = log_level | |
self.linebuf = '' | |
def __getattr__(self, attr): | |
return getattr(self.terminal, attr) | |
def write(self, buf): | |
temp_linebuf = self.linebuf + buf | |
self.linebuf = '' | |
for line in temp_linebuf.splitlines(True): | |
# From the io.TextIOWrapper docs: | |
# On output, if newline is None, any '\n' characters written | |
# are translated to the system default line separator. | |
# By default sys.stdout.write() expects '\n' newlines and then | |
# translates them so this is still cross platform. | |
if line[-1] == '\n': | |
self.logger.log(self.log_level, line.rstrip()) | |
else: | |
self.linebuf += line | |
def flush(self): | |
if self.linebuf != '': | |
self.logger.log(self.log_level, self.linebuf.rstrip()) | |
self.linebuf = '' | |
def maybe_zero_3(param, ignore_status=False, name=None): | |
from deepspeed import zero | |
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus | |
if hasattr(param, "ds_id"): | |
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: | |
if not ignore_status: | |
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") | |
with zero.GatheredParameters([param]): | |
param = param.data.detach().cpu().clone() | |
else: | |
param = param.detach().cpu().clone() | |
return param | |
# Borrowed from peft.utils.get_peft_model_state_dict | |
def get_peft_state_maybe_zero_3(named_params, bias): | |
if bias == "none": | |
to_return = {k: t for k, t in named_params if "lora_" in k} | |
elif bias == "all": | |
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} | |
elif bias == "lora_only": | |
to_return = {} | |
maybe_lora_bias = {} | |
lora_bias_names = set() | |
for k, t in named_params: | |
if "lora_" in k: | |
to_return[k] = t | |
bias_name = k.split("lora_")[0] + "bias" | |
lora_bias_names.add(bias_name) | |
elif "bias" in k: | |
maybe_lora_bias[k] = t | |
for k, t in maybe_lora_bias: | |
if bias_name in lora_bias_names: | |
to_return[bias_name] = t | |
else: | |
raise NotImplementedError | |
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} | |
return to_return | |
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): | |
to_return = {k: t for k, t in named_params if "lora_" not in k} | |
if require_grad_only: | |
to_return = {k: t for k, t in to_return.items() if t.requires_grad} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def get_speech_projector_state_maybe_zero_3(named_params, keys_to_match): | |
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def lengths_to_padding_mask(lens): | |
bsz, max_lens = lens.size(0), torch.max(lens).item() | |
mask = torch.arange(max_lens).to(lens.device).view(1, max_lens) | |
mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens) | |
return mask | |
def lengths_to_mask(lens): | |
return ~lengths_to_padding_mask(lens) | |
def disable_torch_init(): | |
""" | |
Disable the redundant torch default initialization to accelerate model creation. | |
""" | |
import torch | |
setattr(torch.nn.Linear, "reset_parameters", lambda self: None) | |
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) | |
def get_model_name_from_path(model_path): | |
model_path = model_path.strip("/") | |
model_paths = model_path.split("/") | |
if model_paths[-1].startswith('checkpoint-'): | |
return model_paths[-2] + "_" + model_paths[-1] | |
else: | |
return model_paths[-1] | |
def violates_moderation(text): | |
""" | |
Check whether the text violates OpenAI moderation API. | |
""" | |
url = "https://api.openai.com/v1/moderations" | |
headers = {"Content-Type": "application/json", | |
"Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]} | |
text = text.replace("\n", "") | |
data = "{" + '"input": ' + f'"{text}"' + "}" | |
data = data.encode("utf-8") | |
try: | |
ret = requests.post(url, headers=headers, data=data, timeout=5) | |
flagged = ret.json()["results"][0]["flagged"] | |
except requests.exceptions.RequestException as e: | |
flagged = False | |
except KeyError as e: | |
flagged = False | |
return flagged | |
def pretty_print_semaphore(semaphore): | |
if semaphore is None: | |
return "None" | |
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})" |