hysts commited on
Commit
223c6f1
1 Parent(s): 91dedcc

Copy files from https://github.com/hysts/CogView2_demo

Browse files
Files changed (12) hide show
  1. .gitmodules +3 -0
  2. .pre-commit-config.yaml +46 -0
  3. .style.yapf +5 -0
  4. CogView2 +1 -0
  5. LICENSE +21 -0
  6. LICENSE.CogView2 +201 -0
  7. app.py +100 -24
  8. model.py +377 -0
  9. patch +51 -0
  10. requirements.txt +7 -3
  11. samples.txt +13 -0
  12. style.css +7 -0
.gitmodules ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [submodule "CogView2"]
2
+ path = CogView2
3
+ url = https://github.com/THUDM/CogView2
.pre-commit-config.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ exclude: ^patch
2
+ repos:
3
+ - repo: https://github.com/pre-commit/pre-commit-hooks
4
+ rev: v4.2.0
5
+ hooks:
6
+ - id: check-executables-have-shebangs
7
+ - id: check-json
8
+ - id: check-merge-conflict
9
+ - id: check-shebang-scripts-are-executable
10
+ - id: check-toml
11
+ - id: check-yaml
12
+ - id: double-quote-string-fixer
13
+ - id: end-of-file-fixer
14
+ - id: mixed-line-ending
15
+ args: ['--fix=lf']
16
+ - id: requirements-txt-fixer
17
+ - id: trailing-whitespace
18
+ - repo: https://github.com/myint/docformatter
19
+ rev: v1.4
20
+ hooks:
21
+ - id: docformatter
22
+ args: ['--in-place']
23
+ - repo: https://github.com/pycqa/isort
24
+ rev: 5.10.1
25
+ hooks:
26
+ - id: isort
27
+ - repo: https://github.com/pre-commit/mirrors-mypy
28
+ rev: v0.812
29
+ hooks:
30
+ - id: mypy
31
+ args: ['--ignore-missing-imports']
32
+ - repo: https://github.com/google/yapf
33
+ rev: v0.32.0
34
+ hooks:
35
+ - id: yapf
36
+ args: ['--parallel', '--in-place']
37
+ - repo: https://github.com/kynan/nbstripout
38
+ rev: 0.5.0
39
+ hooks:
40
+ - id: nbstripout
41
+ args: ['--extra-keys', 'metadata.interpreter metadata.kernelspec cell.metadata.pycharm']
42
+ - repo: https://github.com/nbQA-dev/nbQA
43
+ rev: 1.3.1
44
+ hooks:
45
+ - id: nbqa-isort
46
+ - id: nbqa-yapf
.style.yapf ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ [style]
2
+ based_on_style = pep8
3
+ blank_line_before_nested_class_or_def = false
4
+ spaces_before_comment = 2
5
+ split_before_logical_operator = true
CogView2 ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 4e55cce981eb94b9c8c1f19ba9f632fd3ee42ba8
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2022 hysts
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
LICENSE.CogView2 ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
app.py CHANGED
@@ -1,32 +1,108 @@
1
- import os
 
 
 
 
 
2
  import gradio as gr
3
- os.system("pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/torch_stable.html")
4
- os.system("git clone https://github.com/Sleepychord/Image-Local-Attention")
5
- os.chdir("Image-Local-Attention")
6
- os.system("python setup.py install")
7
- os.chdir("..")
8
- os.system("git clone https://github.com/NVIDIA/apex")
9
- os.chdir("apex")
10
- os.system('pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./')
11
- os.chdir("..")
12
- os.system("git clone https://github.com/THUDM/CogView2")
13
- os.chdir("CogView2")
14
- os.system("gdown https://drive.google.com/uc?id=1-2nI2TTUOdiQ2WpydGafk_bZIZggQBK4")
15
- os.system("7za x coglm.zip")
16
- os.system("gdown https://drive.google.com/uc?id=1ulfXJFstYZUestvWcQIadKkNNDVbpIdM")
17
 
18
- def inference(text):
19
- with open("input.txt") as f:
20
- lines = f.readlines()
21
- lines[0] = text
22
- with open("input.txt", "w") as f:
23
- f.writelines(lines)
24
- os.system("python cogview2_text2image.py --mode inference --fp16 --input-source input.txt --output-path samples_sat_v0.2 --batch-size 4 --max-inference-batch-size 8 --only-first-stage")
25
- return "/content/CogView2/output.png"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
- gr.Interface(inference,"text","image",title="CogView 2").launch(debug=True,enable_queue=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
 
 
 
 
 
 
 
 
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
 
 
 
 
31
 
32
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ from __future__ import annotations
4
+
5
+ import argparse
6
+
7
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ from model import AppModel
10
+
11
+ DESCRIPTION = '''# CogView2 (text2image)
12
+
13
+ This is an unofficial demo for <a href="https://github.com/THUDM/CogView2">https://github.com/THUDM/CogView2</a>.
14
+
15
+ [This Space](https://huggingface.co/spaces/chinhon/translation_eng2ch) is used for translation from English to Chinese.
16
+ '''
17
+
18
+
19
+ def parse_args() -> argparse.Namespace:
20
+ parser = argparse.ArgumentParser()
21
+ parser.add_argument('--only-first-stage', action='store_true')
22
+ parser.add_argument('--share', action='store_true')
23
+ return parser.parse_args()
24
+
25
+
26
+ def set_example_text(example: list) -> dict:
27
+ return gr.Textbox.update(value=example[0])
28
+
29
+
30
+ def main():
31
+ args = parse_args()
32
+ model = AppModel(args.only_first_stage)
33
+
34
+ with gr.Blocks(css='style.css') as demo:
35
+ gr.Markdown(DESCRIPTION)
36
 
37
+ with gr.Row():
38
+ with gr.Column():
39
+ with gr.Group():
40
+ text = gr.Textbox(label='Input Text')
41
+ translate = gr.Checkbox(label='Translate to Chinese',
42
+ value=False)
43
+ style = gr.Dropdown(choices=[
44
+ 'mainbody',
45
+ 'photo',
46
+ 'flat',
47
+ 'comics',
48
+ 'oil',
49
+ 'sketch',
50
+ 'isometric',
51
+ 'chinese',
52
+ 'watercolor',
53
+ ],
54
+ label='Style')
55
+ seed = gr.Slider(0,
56
+ 100000,
57
+ step=1,
58
+ value=1234,
59
+ label='Seed')
60
+ only_first_stage = gr.Checkbox(
61
+ label='Only First Stage',
62
+ value=args.only_first_stage,
63
+ visible=not args.only_first_stage)
64
+ num_images = gr.Slider(1,
65
+ 16,
66
+ step=1,
67
+ value=8,
68
+ label='Number of Images')
69
+ with open('samples.txt') as f:
70
+ samples = [[line.strip()] for line in f.readlines()]
71
+ examples = gr.Dataset(components=[text], samples=samples)
72
+ run_button = gr.Button('Run')
73
 
74
+ with gr.Column():
75
+ with gr.Group():
76
+ translated_text = gr.Textbox(label='Translated Text')
77
+ with gr.Tabs():
78
+ with gr.TabItem('Output (Grid View)'):
79
+ result_grid = gr.Image(show_label=False)
80
+ with gr.TabItem('Output (Gallery)'):
81
+ result_gallery = gr.Gallery(show_label=False)
82
 
83
+ run_button.click(fn=model.run_with_translation,
84
+ inputs=[
85
+ text,
86
+ translate,
87
+ style,
88
+ seed,
89
+ only_first_stage,
90
+ num_images,
91
+ ],
92
+ outputs=[
93
+ translated_text,
94
+ result_grid,
95
+ result_gallery,
96
+ ])
97
+ examples.click(fn=set_example_text,
98
+ inputs=examples,
99
+ outputs=examples.components)
100
 
101
+ demo.launch(
102
+ enable_queue=True,
103
+ share=args.share,
104
+ )
105
 
106
 
107
+ if __name__ == '__main__':
108
+ main()
model.py ADDED
@@ -0,0 +1,377 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #This code is adapted from https://github.com/THUDM/CogView2/blob/4e55cce981eb94b9c8c1f19ba9f632fd3ee42ba8/cogview2_text2image.py
2
+
3
+ from __future__ import annotations
4
+
5
+ import argparse
6
+ import functools
7
+ import logging
8
+ import pathlib
9
+ import sys
10
+ import time
11
+ from typing import Any
12
+
13
+ import gradio as gr
14
+ import numpy as np
15
+ import torch
16
+ from icetk import IceTokenizer
17
+ from SwissArmyTransformer import get_args
18
+ from SwissArmyTransformer.arguments import set_random_seed
19
+ from SwissArmyTransformer.generation.autoregressive_sampling import \
20
+ filling_sequence
21
+ from SwissArmyTransformer.model import CachedAutoregressiveModel
22
+
23
+ app_dir = pathlib.Path(__file__).parent
24
+ submodule_dir = app_dir / 'CogView2'
25
+ sys.path.insert(0, submodule_dir.as_posix())
26
+
27
+ from coglm_strategy import CoglmStrategy
28
+ from sr_pipeline import SRGroup
29
+
30
+ formatter = logging.Formatter(
31
+ '[%(asctime)s] %(name)s %(levelname)s: %(message)s',
32
+ datefmt='%Y-%m-%d %H:%M:%S')
33
+ stream_handler = logging.StreamHandler(stream=sys.stdout)
34
+ stream_handler.setLevel(logging.DEBUG)
35
+ stream_handler.setFormatter(formatter)
36
+ logger = logging.getLogger(__name__)
37
+ logger.setLevel(logging.DEBUG)
38
+ logger.propagate = False
39
+ logger.addHandler(stream_handler)
40
+
41
+ ICETK_MODEL_DIR = app_dir / 'icetk_models'
42
+
43
+
44
+ def get_masks_and_position_ids_coglm(
45
+ seq: torch.Tensor, context_length: int
46
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
47
+ tokens = seq.unsqueeze(0)
48
+
49
+ attention_mask = torch.ones((1, len(seq), len(seq)), device=tokens.device)
50
+ attention_mask.tril_()
51
+ attention_mask[..., :context_length] = 1
52
+ attention_mask.unsqueeze_(1)
53
+
54
+ position_ids = torch.zeros(len(seq),
55
+ device=tokens.device,
56
+ dtype=torch.long)
57
+ torch.arange(0, context_length, out=position_ids[:context_length])
58
+ torch.arange(512,
59
+ 512 + len(seq) - context_length,
60
+ out=position_ids[context_length:])
61
+
62
+ position_ids = position_ids.unsqueeze(0)
63
+ return tokens, attention_mask, position_ids
64
+
65
+
66
+ class InferenceModel(CachedAutoregressiveModel):
67
+ def final_forward(self, logits, **kwargs):
68
+ logits_parallel = logits
69
+ logits_parallel = torch.nn.functional.linear(
70
+ logits_parallel.float(),
71
+ self.transformer.word_embeddings.weight[:20000].float())
72
+ return logits_parallel
73
+
74
+
75
+ def get_recipe(name: str) -> dict[str, Any]:
76
+ r = {
77
+ 'attn_plus': 1.4,
78
+ 'temp_all_gen': 1.15,
79
+ 'topk_gen': 16,
80
+ 'temp_cluster_gen': 1.,
81
+ 'temp_all_dsr': 1.5,
82
+ 'topk_dsr': 100,
83
+ 'temp_cluster_dsr': 0.89,
84
+ 'temp_all_itersr': 1.3,
85
+ 'topk_itersr': 16,
86
+ 'query_template': '{}<start_of_image>',
87
+ }
88
+ if name == 'none':
89
+ pass
90
+ elif name == 'mainbody':
91
+ r['query_template'] = '{} 高清摄影 隔绝<start_of_image>'
92
+
93
+ elif name == 'photo':
94
+ r['query_template'] = '{} 高清摄影<start_of_image>'
95
+
96
+ elif name == 'flat':
97
+ r['query_template'] = '{} 平面风格<start_of_image>'
98
+ # r['attn_plus'] = 1.8
99
+ # r['temp_cluster_gen'] = 0.75
100
+ r['temp_all_gen'] = 1.1
101
+ r['topk_dsr'] = 5
102
+ r['temp_cluster_dsr'] = 0.4
103
+
104
+ r['temp_all_itersr'] = 1
105
+ r['topk_itersr'] = 5
106
+ elif name == 'comics':
107
+ r['query_template'] = '{} 漫画 隔绝<start_of_image>'
108
+ r['topk_dsr'] = 5
109
+ r['temp_cluster_dsr'] = 0.4
110
+ r['temp_all_gen'] = 1.1
111
+ r['temp_all_itersr'] = 1
112
+ r['topk_itersr'] = 5
113
+ elif name == 'oil':
114
+ r['query_template'] = '{} 油画风格<start_of_image>'
115
+ pass
116
+ elif name == 'sketch':
117
+ r['query_template'] = '{} 素描风格<start_of_image>'
118
+ r['temp_all_gen'] = 1.1
119
+ elif name == 'isometric':
120
+ r['query_template'] = '{} 等距矢量图<start_of_image>'
121
+ r['temp_all_gen'] = 1.1
122
+ elif name == 'chinese':
123
+ r['query_template'] = '{} 水墨国画<start_of_image>'
124
+ r['temp_all_gen'] = 1.12
125
+ elif name == 'watercolor':
126
+ r['query_template'] = '{} 水彩画风格<start_of_image>'
127
+ return r
128
+
129
+
130
+ def get_default_args() -> argparse.Namespace:
131
+ arg_list = ['--mode', 'inference', '--fp16']
132
+ args = get_args(arg_list)
133
+ known = argparse.Namespace(img_size=160,
134
+ only_first_stage=False,
135
+ inverse_prompt=False,
136
+ style='mainbody')
137
+ args = argparse.Namespace(**vars(args), **vars(known),
138
+ **get_recipe(known.style))
139
+ return args
140
+
141
+
142
+ class Model:
143
+ def __init__(self, only_first_stage: bool = False):
144
+ self.args = get_default_args()
145
+ self.args.only_first_stage = only_first_stage
146
+
147
+ self.tokenizer = self.load_tokenizer()
148
+
149
+ self.model, self.args = self.load_model()
150
+ self.strategy = self.load_strategy()
151
+ self.srg = self.load_srg()
152
+
153
+ self.query_template = self.args.query_template
154
+ self.style = self.args.style
155
+ self.device = torch.device(self.args.device)
156
+ self.fp16 = self.args.fp16
157
+ self.max_batch_size = self.args.max_inference_batch_size
158
+ self.only_first_stage = self.args.only_first_stage
159
+
160
+ def load_tokenizer(self) -> IceTokenizer:
161
+ logger.info('--- load_tokenizer ---')
162
+ start = time.perf_counter()
163
+
164
+ tokenizer = IceTokenizer(ICETK_MODEL_DIR.as_posix())
165
+ tokenizer.add_special_tokens(
166
+ ['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
167
+
168
+ elapsed = time.perf_counter() - start
169
+ logger.info(f'Elapsed: {elapsed}')
170
+ logger.info('--- done ---')
171
+ return tokenizer
172
+
173
+ def load_model(self) -> tuple[InferenceModel, argparse.Namespace]:
174
+ logger.info('--- load_model ---')
175
+ start = time.perf_counter()
176
+
177
+ model, args = InferenceModel.from_pretrained(self.args, 'coglm')
178
+
179
+ elapsed = time.perf_counter() - start
180
+ logger.info(f'Elapsed: {elapsed}')
181
+ logger.info('--- done ---')
182
+ return model, args
183
+
184
+ def load_strategy(self) -> CoglmStrategy:
185
+ logger.info('--- load_strategy ---')
186
+ start = time.perf_counter()
187
+
188
+ invalid_slices = [slice(self.tokenizer.num_image_tokens, None)]
189
+ strategy = CoglmStrategy(invalid_slices,
190
+ temperature=self.args.temp_all_gen,
191
+ top_k=self.args.topk_gen,
192
+ top_k_cluster=self.args.temp_cluster_gen)
193
+
194
+ elapsed = time.perf_counter() - start
195
+ logger.info(f'Elapsed: {elapsed}')
196
+ logger.info('--- done ---')
197
+ return strategy
198
+
199
+ def load_srg(self) -> SRGroup:
200
+ logger.info('--- load_srg ---')
201
+ start = time.perf_counter()
202
+
203
+ srg = None if self.args.only_first_stage else SRGroup(self.args)
204
+
205
+ elapsed = time.perf_counter() - start
206
+ logger.info(f'Elapsed: {elapsed}')
207
+ logger.info('--- done ---')
208
+ return srg
209
+
210
+ def update_style(self, style: str) -> None:
211
+ if style == self.style:
212
+ return
213
+ logger.info('--- update_style ---')
214
+ start = time.perf_counter()
215
+
216
+ self.args = argparse.Namespace(**(vars(self.args) | get_recipe(style)))
217
+ self.query_template = self.args.query_template
218
+ logger.info(f'{self.query_template=}')
219
+
220
+ self.strategy.temperature = self.args.temp_all_gen
221
+
222
+ if self.srg is not None:
223
+ self.srg.dsr.strategy.temperature = self.args.temp_all_dsr
224
+ self.srg.dsr.strategy.topk = self.args.topk_dsr
225
+ self.srg.dsr.strategy.temperature2 = self.args.temp_cluster_dsr
226
+
227
+ self.srg.itersr.strategy.temperature = self.args.temp_all_itersr
228
+ self.srg.itersr.strategy.topk = self.args.topk_itersr
229
+
230
+ elapsed = time.perf_counter() - start
231
+ logger.info(f'Elapsed: {elapsed}')
232
+ logger.info('--- done ---')
233
+
234
+ def run(self, text: str, style: str, seed: int, only_first_stage: bool,
235
+ num: int) -> list[np.ndarray] | None:
236
+ set_random_seed(seed)
237
+ seq, txt_len = self.preprocess_text(text)
238
+ if seq is None:
239
+ return None
240
+ self.update_style(style)
241
+ self.only_first_stage = only_first_stage
242
+ tokens = self.generate_tokens(seq, txt_len, num)
243
+ res = self.generate_images(seq, txt_len, tokens)
244
+ return res
245
+
246
+ @torch.inference_mode()
247
+ def preprocess_text(
248
+ self, text: str) -> tuple[torch.Tensor, int] | tuple[None, None]:
249
+ logger.info('--- preprocess_text ---')
250
+ start = time.perf_counter()
251
+
252
+ text = self.query_template.format(text)
253
+ logger.info(f'{text=}')
254
+ seq = self.tokenizer.encode(text)
255
+ logger.info(f'{len(seq)=}')
256
+ if len(seq) > 110:
257
+ logger.info('The input text is too long.')
258
+ return None, None
259
+ txt_len = len(seq) - 1
260
+ seq = torch.tensor(seq + [-1] * 400, device=self.device)
261
+
262
+ elapsed = time.perf_counter() - start
263
+ logger.info(f'Elapsed: {elapsed}')
264
+ logger.info('--- done ---')
265
+ return seq, txt_len
266
+
267
+ @torch.inference_mode()
268
+ def generate_tokens(self,
269
+ seq: torch.Tensor,
270
+ txt_len: int,
271
+ num: int = 8) -> torch.Tensor:
272
+ logger.info('--- generate_tokens ---')
273
+ start = time.perf_counter()
274
+
275
+ # calibrate text length
276
+ log_attention_weights = torch.zeros(
277
+ len(seq),
278
+ len(seq),
279
+ device=self.device,
280
+ dtype=torch.half if self.fp16 else torch.float32)
281
+ log_attention_weights[:, :txt_len] = self.args.attn_plus
282
+ get_func = functools.partial(get_masks_and_position_ids_coglm,
283
+ context_length=txt_len)
284
+
285
+ output_list = []
286
+ remaining = num
287
+ for _ in range((num + self.max_batch_size - 1) // self.max_batch_size):
288
+ self.strategy.start_pos = txt_len + 1
289
+ coarse_samples = filling_sequence(
290
+ self.model,
291
+ seq.clone(),
292
+ batch_size=min(remaining, self.max_batch_size),
293
+ strategy=self.strategy,
294
+ log_attention_weights=log_attention_weights,
295
+ get_masks_and_position_ids=get_func)[0]
296
+ output_list.append(coarse_samples)
297
+ remaining -= self.max_batch_size
298
+ output_tokens = torch.cat(output_list, dim=0)
299
+ logger.info(f'{output_tokens.shape=}')
300
+
301
+ elapsed = time.perf_counter() - start
302
+ logger.info(f'Elapsed: {elapsed}')
303
+ logger.info('--- done ---')
304
+ return output_tokens
305
+
306
+ @staticmethod
307
+ def postprocess(tensor: torch.Tensor) -> np.ndarray:
308
+ return tensor.cpu().mul(255).add_(0.5).clamp_(0, 255).permute(
309
+ 1, 2, 0).to(torch.uint8).numpy()
310
+
311
+ @torch.inference_mode()
312
+ def generate_images(self, seq: torch.Tensor, txt_len: int,
313
+ tokens: torch.Tensor) -> list[np.ndarray]:
314
+ logger.info('--- generate_images ---')
315
+ start = time.perf_counter()
316
+
317
+ logger.info(f'{self.only_first_stage=}')
318
+ res = []
319
+ if self.only_first_stage:
320
+ for i in range(len(tokens)):
321
+ seq = tokens[i]
322
+ decoded_img = self.tokenizer.decode(image_ids=seq[-400:])
323
+ decoded_img = torch.nn.functional.interpolate(decoded_img,
324
+ size=(480, 480))
325
+ decoded_img = self.postprocess(decoded_img[0])
326
+ res.append(decoded_img) # only the last image (target)
327
+ else: # sr
328
+ iter_tokens = self.srg.sr_base(tokens[:, -400:], seq[:txt_len])
329
+ for seq in iter_tokens:
330
+ decoded_img = self.tokenizer.decode(image_ids=seq[-3600:])
331
+ decoded_img = torch.nn.functional.interpolate(decoded_img,
332
+ size=(480, 480))
333
+ decoded_img = self.postprocess(decoded_img[0])
334
+ res.append(decoded_img) # only the last image (target)
335
+
336
+ elapsed = time.perf_counter() - start
337
+ logger.info(f'Elapsed: {elapsed}')
338
+ logger.info('--- done ---')
339
+ return res
340
+
341
+
342
+ class AppModel(Model):
343
+ def __init__(self, only_first_stage: bool):
344
+ super().__init__(only_first_stage)
345
+ self.translator = gr.Interface.load(
346
+ 'spaces/chinhon/translation_eng2ch')
347
+
348
+ def make_grid(self, images: list[np.ndarray] | None) -> np.ndarray | None:
349
+ if images is None or len(images) == 0:
350
+ return None
351
+ ncols = 1
352
+ while True:
353
+ if ncols**2 >= len(images):
354
+ break
355
+ ncols += 1
356
+ nrows = (len(images) + ncols - 1) // ncols
357
+ h, w = images[0].shape[:2]
358
+ grid = np.zeros((h * nrows, w * ncols, 3), dtype=np.uint8)
359
+ for i in range(nrows):
360
+ for j in range(ncols):
361
+ index = ncols * i + j
362
+ if index >= len(images):
363
+ break
364
+ grid[h * i:h * (i + 1), w * j:w * (j + 1)] = images[index]
365
+ return grid
366
+
367
+ def run_with_translation(
368
+ self, text: str, translate: bool, style: str, seed: int,
369
+ only_first_stage: bool, num: int
370
+ ) -> tuple[str | None, np.ndarray | None, list[np.ndarray] | None]:
371
+ if translate:
372
+ text = translated_text = self.translator(text)
373
+ else:
374
+ translated_text = None
375
+ results = self.run(text, style, seed, only_first_stage, num)
376
+ grid_image = self.make_grid(results)
377
+ return translated_text, grid_image, results
patch ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ diff --git a/coglm_strategy.py b/coglm_strategy.py
2
+ index cba87ce..40e4ece 100755
3
+ --- a/coglm_strategy.py
4
+ +++ b/coglm_strategy.py
5
+ @@ -8,6 +8,7 @@
6
+
7
+ # here put the import lib
8
+ import os
9
+ +import pathlib
10
+ import sys
11
+ import math
12
+ import random
13
+ @@ -57,7 +58,8 @@ class CoglmStrategy:
14
+ self._is_done = False
15
+ self.outlier_count_down = 5
16
+ self.vis_list = [[]for i in range(16)]
17
+ - self.cluster_labels = torch.tensor(np.load('cluster_label.npy'), device='cuda', dtype=torch.long)
18
+ + cluster_label_path = pathlib.Path(__file__).parent / 'cluster_label.npy'
19
+ + self.cluster_labels = torch.tensor(np.load(cluster_label_path), device='cuda', dtype=torch.long)
20
+ self.top_k_cluster = top_k_cluster
21
+
22
+ @property
23
+ @@ -91,4 +93,4 @@ class CoglmStrategy:
24
+
25
+ def finalize(self, tokens, mems):
26
+ self._is_done = False
27
+ - return tokens, mems
28
+
29
+ + return tokens, mems
30
+ diff --git a/sr_pipeline/dsr_sampling.py b/sr_pipeline/dsr_sampling.py
31
+ index a0d0298..f721573 100755
32
+ --- a/sr_pipeline/dsr_sampling.py
33
+ +++ b/sr_pipeline/dsr_sampling.py
34
+ @@ -8,6 +8,7 @@
35
+
36
+ # here put the import lib
37
+ import os
38
+ +import pathlib
39
+ import sys
40
+ import math
41
+ import random
42
+ @@ -27,7 +28,8 @@ class IterativeEntfilterStrategy:
43
+ self.invalid_slices = invalid_slices
44
+ self.temperature = temperature
45
+ self.topk = topk
46
+ - self.cluster_labels = torch.tensor(np.load('cluster_label.npy'), device='cuda', dtype=torch.long)
47
+ + cluster_label_path = pathlib.Path(__file__).parents[1] / 'cluster_label.npy'
48
+ + self.cluster_labels = torch.tensor(np.load(cluster_label_path), device='cuda', dtype=torch.long)
49
+ self.temperature2 = temperature2
50
+
51
+
requirements.txt CHANGED
@@ -1,3 +1,7 @@
1
- SwissArmyTransformer>=0.2
2
- icetk
3
- gdown
 
 
 
 
 
1
+ git+https://github.com/Sleepychord/Image-Local-Attention@43fee31
2
+ gradio==3.0.17
3
+ icetk==0.0.3
4
+ numpy==1.22.4
5
+ SwissArmyTransformer==0.2.4
6
+ torch==1.11.0
7
+ torchvision==0.12.0
samples.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A beautiful girl is hugging a husky.
2
+ A lion teacher wearing a suit is in front of a blackboard.
3
+ A robot is riding under the blue and cloudy sky.
4
+ Several youths are talking in a bar.
5
+ A lion man is typing in the office.
6
+ A young woman is taking photos.
7
+ A pirate captain with a skull.
8
+ A girl holding an oil-paper umbrella in a rainy lane.
9
+ Earth in the eye.
10
+ A magnificent church. Sketch.
11
+ Mount Fuji, cherry blossom and Akita dog. Oil painting.
12
+ A tiger with angel's wings.
13
+ A fox is sitting on the books.
style.css ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ h1 {
2
+ text-align: center;
3
+ }
4
+ img#visitor-badge {
5
+ display: block;
6
+ margin: auto;
7
+ }