Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
import base64
|
| 4 |
+
import os
|
| 5 |
+
import json
|
| 6 |
+
import numpy as np
|
| 7 |
+
import scipy.io.wavfile as wavfile
|
| 8 |
+
import tempfile
|
| 9 |
+
import torch
|
| 10 |
+
from google import genai
|
| 11 |
+
from google.genai import types
|
| 12 |
+
from gradio_client import Client, handle_file
|
| 13 |
+
from pyannote.audio import Pipeline
|
| 14 |
+
|
| 15 |
+
# Configuration
|
| 16 |
+
SEAMLESS_SPACE = "tgpro1/sttr"
|
| 17 |
+
GEMINI_API_KEY = os.environ.get('GEMINI_API_KEY')
|
| 18 |
+
HF_TOKEN = os.environ.get('HF_TOKEN')
|
| 19 |
+
|
| 20 |
+
LANGUAGES = {
|
| 21 |
+
"Darija": "ar-SA",
|
| 22 |
+
"Arabic": "ar-SA",
|
| 23 |
+
"French": "fr-FR",
|
| 24 |
+
"English": "en-US",
|
| 25 |
+
"Spanish": "es-ES",
|
| 26 |
+
"German": "de-DE",
|
| 27 |
+
"Italian": "it-IT",
|
| 28 |
+
"Portuguese": "pt-PT",
|
| 29 |
+
"Chinese": "zh-CN",
|
| 30 |
+
"Japanese": "ja-JP",
|
| 31 |
+
"Korean": "ko-KR",
|
| 32 |
+
"Russian": "ru-RU",
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
# Pyannote Diarization
|
| 36 |
+
diarization_pipeline = None
|
| 37 |
+
try:
|
| 38 |
+
if HF_TOKEN:
|
| 39 |
+
diarization_pipeline = Pipeline.from_pretrained(
|
| 40 |
+
"pyannote/speaker-diarization-3.1",
|
| 41 |
+
use_auth_token=HF_TOKEN
|
| 42 |
+
)
|
| 43 |
+
if torch.cuda.is_available():
|
| 44 |
+
diarization_pipeline.to(torch.device("cuda"))
|
| 45 |
+
print("Pyannote: LOADED (GPU)")
|
| 46 |
+
else:
|
| 47 |
+
print("Pyannote: LOADED (CPU)")
|
| 48 |
+
except Exception as e:
|
| 49 |
+
print(f"Pyannote Error: {e}")
|
| 50 |
+
|
| 51 |
+
def diarize_audio(audio_path, min_speakers=1, max_speakers=5):
|
| 52 |
+
if not diarization_pipeline:
|
| 53 |
+
return {"error": "Diarization not available"}
|
| 54 |
+
try:
|
| 55 |
+
diarization = diarization_pipeline(audio_path, min_speakers=int(min_speakers), max_speakers=int(max_speakers))
|
| 56 |
+
speakers = []
|
| 57 |
+
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
| 58 |
+
speakers.append({"speaker": speaker, "start": round(turn.start, 2), "end": round(turn.end, 2)})
|
| 59 |
+
return {"segments": speakers, "num_speakers": len(set(s["speaker"] for s in speakers))}
|
| 60 |
+
except Exception as e:
|
| 61 |
+
return {"error": str(e)}
|
| 62 |
+
|
| 63 |
+
with gr.Blocks(title="STTR") as demo:
|
| 64 |
+
gr.Markdown("# STTR - Speaker Diarization")
|
| 65 |
+
with gr.Tab("Diarization"):
|
| 66 |
+
audio_in = gr.Audio(type="filepath", label="Audio")
|
| 67 |
+
with gr.Row():
|
| 68 |
+
min_spk = gr.Slider(1, 10, value=1, step=1, label="Min Speakers")
|
| 69 |
+
max_spk = gr.Slider(1, 10, value=5, step=1, label="Max Speakers")
|
| 70 |
+
btn = gr.Button("Analyze", variant="primary")
|
| 71 |
+
output = gr.JSON(label="Result")
|
| 72 |
+
btn.click(diarize_audio, [audio_in, min_spk, max_spk], output, api_name="/diarize")
|
| 73 |
+
|
| 74 |
+
if __name__ == "__main__":
|
| 75 |
+
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|