Update app.py
Browse files
app.py
CHANGED
|
@@ -47,7 +47,8 @@ def load_models():
|
|
| 47 |
classification_model.eval()
|
| 48 |
|
| 49 |
# 2. Load text generation model
|
| 50 |
-
llm_model_name = "Qwen/Qwen3-0.6B"
|
|
|
|
| 51 |
tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
|
| 52 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 53 |
llm_model_name,
|
|
@@ -143,7 +144,7 @@ def generate_response(message, chat_history, analysis_results):
|
|
| 143 |
model_inputs = tokenizer([text], return_tensors="pt").to(llm_model.device)
|
| 144 |
generated_ids = llm_model.generate(
|
| 145 |
**model_inputs,
|
| 146 |
-
max_new_tokens=
|
| 147 |
do_sample=True,
|
| 148 |
temperature=0.7,
|
| 149 |
)
|
|
|
|
| 47 |
classification_model.eval()
|
| 48 |
|
| 49 |
# 2. Load text generation model
|
| 50 |
+
# llm_model_name = "Qwen/Qwen3-0.6B"
|
| 51 |
+
llm_model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 52 |
tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
|
| 53 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 54 |
llm_model_name,
|
|
|
|
| 144 |
model_inputs = tokenizer([text], return_tensors="pt").to(llm_model.device)
|
| 145 |
generated_ids = llm_model.generate(
|
| 146 |
**model_inputs,
|
| 147 |
+
max_new_tokens=256,
|
| 148 |
do_sample=True,
|
| 149 |
temperature=0.7,
|
| 150 |
)
|