Spaces:
Sleeping
Sleeping
from langchain.llms import HuggingFacePipeline | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForSeq2SeqLM | |
from components import caption_chain, tag_chain | |
from components import pexels, utils | |
import os, gc | |
import gradio as gr | |
# model = AutoModelForSeq2SeqLM.from_pretrained("declare-lab/flan-alpaca-gpt4-xl") | |
# tokenizer = AutoTokenizer.from_pretrained("declare-lab/flan-alpaca-gpt4-xl") | |
model = AutoModelForSeq2SeqLM.from_pretrained("declare-lab/flan-alpaca-large") | |
tokenizer = AutoTokenizer.from_pretrained("declare-lab/flan-alpaca-large") | |
pipe = pipeline( | |
'text2text-generation', | |
model=model, | |
tokenizer= tokenizer, | |
max_length=256 | |
) | |
local_llm = HuggingFacePipeline(pipeline=pipe) | |
llm_chain = caption_chain.chain(llm=local_llm) | |
sum_llm_chain = tag_chain.chain(llm=local_llm) | |
pexels_api_key = os.getenv('pexels_api_key') | |
def pred(product_name, orientation): | |
if orientation == "Shorts/Reels/TikTok (1080 x 1920)": | |
orientation = "potrait" | |
height = 1920 | |
width = 1080 | |
elif orientation == "Youtube Videos (1920 x 1080)": | |
orientation = "landscape" | |
height = 1080 | |
width = 1920 | |
else : | |
orientation = "square" | |
height = 1080 | |
width = 1080 | |
folder_name, sentences = pexels.generate_videos(product_name, pexels_api_key, orientation, height, width, llm_chain, sum_llm_chain) | |
gc.collect() | |
utils.combine_videos(folder_name) | |
return ["\n".join(sentences), os.path.join(folder_name, "Final_Ad_Video.mp4")] | |
#{'video':os.path.join(folder_name, "Final_Ad_Video.mp4"), | |
# 'captions':"\n".join(sentences)} | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Ads Generator | |
Create video ads based on your product name using AI | |
### Note : the video generation takes about 2-4 minutes | |
""" | |
) | |
dimension = gr.Dropdown( | |
["Shorts/Reels/TikTok (1080 x 1920)", "Facebook/Youtube Videos (1920 x 1080)", "Square (1080 x 1080)"], | |
label="Video Dimension", info="Choose dimension" | |
) | |
product_name = gr.Textbox(label="product name") | |
captions = gr.Textbox(label="captions") | |
video = gr.Video() | |
btn = gr.Button("Submit") | |
btn.click(pred, inputs=[product_name, dimension], outputs=[captions,video]) | |
demo.launch() |