Spaces:
Paused
Paused
fix temp and humidity
Browse files- APIs/meteo.py +46 -31
- utils.py +2 -2
APIs/meteo.py
CHANGED
@@ -5,9 +5,9 @@ from retry_requests import retry
|
|
5 |
|
6 |
|
7 |
# Setup the Open-Meteo API client with cache and retry on error
|
8 |
-
cache_session = requests_cache.CachedSession('.cache', expire_after
|
9 |
-
retry_session = retry(cache_session, retries
|
10 |
-
openmeteo = openmeteo_requests.Client(session
|
11 |
|
12 |
|
13 |
def get_info_meteo(latitude, longitude):
|
@@ -15,22 +15,22 @@ def get_info_meteo(latitude, longitude):
|
|
15 |
ARGS:
|
16 |
latitude (Float) : latitude coordinate
|
17 |
longitude (Float): longitude coordinate
|
18 |
-
|
19 |
"""
|
20 |
url = "https://api.open-meteo.com/v1/forecast"
|
21 |
params = {
|
22 |
-
"latitude": latitude,
|
23 |
-
"longitude": longitude,
|
24 |
"hourly": {"relative_humidity_2m", "soil_temperature_0cm", "soil_moisture_0_to_1cm", "cloud_cover"},
|
25 |
-
"daily": {"temperature_2m_max","precipitation_sum", "wind_speed_10m_max", "sunshine_duration", "rain_sum"},
|
26 |
-
"past_days"
|
27 |
-
"forecast_days"
|
28 |
-
|
29 |
-
}
|
30 |
responses = openmeteo.weather_api(url, params=params)
|
31 |
response = responses[0]
|
32 |
|
33 |
-
#Hourly dataframe
|
34 |
|
35 |
hourly = response.Hourly()
|
36 |
hourly_relative_humidity_2m = hourly.Variables(0).ValuesAsNumpy()
|
@@ -39,10 +39,10 @@ def get_info_meteo(latitude, longitude):
|
|
39 |
hourly_cloud_cover = hourly.Variables(3).ValuesAsNumpy()
|
40 |
|
41 |
hourly_data = {"date": pd.date_range(
|
42 |
-
start
|
43 |
-
end
|
44 |
-
freq
|
45 |
-
inclusive
|
46 |
)}
|
47 |
|
48 |
hourly_data["relative_humidity_2m_%"] = hourly_relative_humidity_2m
|
@@ -50,26 +50,34 @@ def get_info_meteo(latitude, longitude):
|
|
50 |
hourly_data["soil_moisture_0_to_1cm_m³"] = hourly_soil_moisture_0_to_1cm
|
51 |
hourly_data["cloud_cover_%"] = hourly_cloud_cover
|
52 |
|
53 |
-
hourly_dataframe = pd.DataFrame(data
|
54 |
-
|
55 |
|
56 |
-
hourly_dataframe = pd.DataFrame(data
|
57 |
|
58 |
-
#Average hourly data per day
|
59 |
-
hourly_dataframe['day_date'] = hourly_dataframe['date'].dt.strftime(
|
|
|
60 |
|
61 |
-
tmp1 = hourly_dataframe.groupby('day_date')[
|
|
|
62 |
|
63 |
-
avg_hourly_dataframe = tmp1.rename(columns={
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
#med cloud couverture
|
66 |
tmp2 = hourly_dataframe.groupby('day_date')[['cloud_cover_%']].median()
|
67 |
|
68 |
-
med_cloud_cover = tmp2.rename(
|
|
|
69 |
|
70 |
-
#Daily dataframe
|
71 |
daily = response.Daily()
|
72 |
daily_temperature_2m_max = daily.Variables(0).ValuesAsNumpy()
|
|
|
73 |
daily_precipitation_sum = daily.Variables(1).ValuesAsNumpy()
|
74 |
daily_wind_speed_10m_max = daily.Variables(2).ValuesAsNumpy()
|
75 |
daily_sunshine_duration = daily.Variables(3).ValuesAsNumpy()
|
@@ -78,7 +86,7 @@ def get_info_meteo(latitude, longitude):
|
|
78 |
daily_data = {"date": pd.date_range(
|
79 |
start=pd.to_datetime(daily.Time(), unit="s", utc=True),
|
80 |
end=pd.to_datetime(daily.TimeEnd(), unit="s", utc=True),
|
81 |
-
freq='D',
|
82 |
inclusive="left"
|
83 |
)}
|
84 |
|
@@ -90,13 +98,20 @@ def get_info_meteo(latitude, longitude):
|
|
90 |
|
91 |
daily_dataframe = pd.DataFrame(data=daily_data)
|
92 |
|
93 |
-
daily_dataframe['day_date'] = daily_dataframe['date'].dt.strftime(
|
|
|
94 |
|
95 |
-
total_df = pd.merge(daily_dataframe, avg_hourly_dataframe,
|
|
|
96 |
total_df = pd.merge(total_df, med_cloud_cover, on="day_date", how="left")
|
97 |
|
98 |
total_df['date'] = total_df['day_date']
|
99 |
total_df = total_df.drop('day_date', axis=1)
|
100 |
-
|
|
|
101 |
return total_df
|
102 |
-
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
# Setup the Open-Meteo API client with cache and retry on error
|
8 |
+
cache_session = requests_cache.CachedSession('.cache', expire_after=3600)
|
9 |
+
retry_session = retry(cache_session, retries=5, backoff_factor=0.2)
|
10 |
+
openmeteo = openmeteo_requests.Client(session=retry_session)
|
11 |
|
12 |
|
13 |
def get_info_meteo(latitude, longitude):
|
|
|
15 |
ARGS:
|
16 |
latitude (Float) : latitude coordinate
|
17 |
longitude (Float): longitude coordinate
|
18 |
+
|
19 |
"""
|
20 |
url = "https://api.open-meteo.com/v1/forecast"
|
21 |
params = {
|
22 |
+
"latitude": latitude,
|
23 |
+
"longitude": longitude, # "cloud_cover_low", "cloud_cover_mid","cloud_cover_high"
|
24 |
"hourly": {"relative_humidity_2m", "soil_temperature_0cm", "soil_moisture_0_to_1cm", "cloud_cover"},
|
25 |
+
"daily": {"temperature_2m_max", "precipitation_sum", "wind_speed_10m_max", "sunshine_duration", "rain_sum"},
|
26 |
+
"past_days": 5,
|
27 |
+
"forecast_days": 7
|
28 |
+
|
29 |
+
}
|
30 |
responses = openmeteo.weather_api(url, params=params)
|
31 |
response = responses[0]
|
32 |
|
33 |
+
# Hourly dataframe
|
34 |
|
35 |
hourly = response.Hourly()
|
36 |
hourly_relative_humidity_2m = hourly.Variables(0).ValuesAsNumpy()
|
|
|
39 |
hourly_cloud_cover = hourly.Variables(3).ValuesAsNumpy()
|
40 |
|
41 |
hourly_data = {"date": pd.date_range(
|
42 |
+
start=pd.to_datetime(hourly.Time(), unit="s", utc=True),
|
43 |
+
end=pd.to_datetime(hourly.TimeEnd(), unit="s", utc=True),
|
44 |
+
freq=pd.Timedelta(seconds=hourly.Interval()),
|
45 |
+
inclusive="left"
|
46 |
)}
|
47 |
|
48 |
hourly_data["relative_humidity_2m_%"] = hourly_relative_humidity_2m
|
|
|
50 |
hourly_data["soil_moisture_0_to_1cm_m³"] = hourly_soil_moisture_0_to_1cm
|
51 |
hourly_data["cloud_cover_%"] = hourly_cloud_cover
|
52 |
|
53 |
+
hourly_dataframe = pd.DataFrame(data=hourly_data)
|
|
|
54 |
|
55 |
+
hourly_dataframe = pd.DataFrame(data=hourly_data)
|
56 |
|
57 |
+
# Average hourly data per day
|
58 |
+
hourly_dataframe['day_date'] = hourly_dataframe['date'].dt.strftime(
|
59 |
+
'%Y-%m-%d')
|
60 |
|
61 |
+
tmp1 = hourly_dataframe.groupby('day_date')[
|
62 |
+
['relative_humidity_2m_%', 'soil_temperature_0cm_C', 'soil_moisture_0_to_1cm_m³']].mean()
|
63 |
|
64 |
+
avg_hourly_dataframe = tmp1.rename(columns={
|
65 |
+
'relative_humidity_2m_%': 'avg_hourly_relative_humidity_2m_%',
|
66 |
+
'soil_temperature_0cm_C': 'avg_hourly_soil_temperature_0cm_C',
|
67 |
+
'soil_moisture_0_to_1cm_m³': 'avg_hourly_soil_moisture_0_to_1cm_m³'
|
68 |
+
}
|
69 |
+
)
|
70 |
|
71 |
+
# med cloud couverture
|
72 |
tmp2 = hourly_dataframe.groupby('day_date')[['cloud_cover_%']].median()
|
73 |
|
74 |
+
med_cloud_cover = tmp2.rename(
|
75 |
+
columns={'cloud_cover_%': 'med_cloud_cover_%'})
|
76 |
|
77 |
+
# Daily dataframe
|
78 |
daily = response.Daily()
|
79 |
daily_temperature_2m_max = daily.Variables(0).ValuesAsNumpy()
|
80 |
+
print(daily_temperature_2m_max)
|
81 |
daily_precipitation_sum = daily.Variables(1).ValuesAsNumpy()
|
82 |
daily_wind_speed_10m_max = daily.Variables(2).ValuesAsNumpy()
|
83 |
daily_sunshine_duration = daily.Variables(3).ValuesAsNumpy()
|
|
|
86 |
daily_data = {"date": pd.date_range(
|
87 |
start=pd.to_datetime(daily.Time(), unit="s", utc=True),
|
88 |
end=pd.to_datetime(daily.TimeEnd(), unit="s", utc=True),
|
89 |
+
freq='D',
|
90 |
inclusive="left"
|
91 |
)}
|
92 |
|
|
|
98 |
|
99 |
daily_dataframe = pd.DataFrame(data=daily_data)
|
100 |
|
101 |
+
daily_dataframe['day_date'] = daily_dataframe['date'].dt.strftime(
|
102 |
+
'%Y-%m-%d')
|
103 |
|
104 |
+
total_df = pd.merge(daily_dataframe, avg_hourly_dataframe,
|
105 |
+
on="day_date", how="left")
|
106 |
total_df = pd.merge(total_df, med_cloud_cover, on="day_date", how="left")
|
107 |
|
108 |
total_df['date'] = total_df['day_date']
|
109 |
total_df = total_df.drop('day_date', axis=1)
|
110 |
+
|
111 |
+
total_df.to_json("weather_data.json", orient='columns')
|
112 |
return total_df
|
113 |
+
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
df = get_info_meteo(48.832, 2.286)
|
117 |
+
print(df)
|
utils.py
CHANGED
@@ -32,8 +32,8 @@ query_engine = index.as_query_engine(similarity_top_k=15)
|
|
32 |
def on_init(lat, lon, address):
|
33 |
map_html, fig = show_map(lat, lon, address)
|
34 |
df = get_info_meteo(lat, lon)
|
35 |
-
avg_temp = df.loc[:, '
|
36 |
-
avg_humidity = df.loc[:, '
|
37 |
# avg_snowfall = df.loc[:, 'daily_precipitation_sum_mm'].mean()
|
38 |
avg_cloud_cover = df.loc[:, 'med_cloud_cover_%'].mean()
|
39 |
avg_precipitations = df.loc[:, 'daily_rain_sum_mm'].mean()
|
|
|
32 |
def on_init(lat, lon, address):
|
33 |
map_html, fig = show_map(lat, lon, address)
|
34 |
df = get_info_meteo(lat, lon)
|
35 |
+
avg_temp = df.loc[:, 'avg_hourly_soil_temperature_0cm_C'].mean()
|
36 |
+
avg_humidity = df.loc[:, 'avg_hourly_relative_humidity_2m_%'].mean()
|
37 |
# avg_snowfall = df.loc[:, 'daily_precipitation_sum_mm'].mean()
|
38 |
avg_cloud_cover = df.loc[:, 'med_cloud_cover_%'].mean()
|
39 |
avg_precipitations = df.loc[:, 'daily_rain_sum_mm'].mean()
|