Spaces:
Paused
Paused
fix meteo api
Browse files- .gitignore +2 -1
- APIs/meteo.py +42 -23
.gitignore
CHANGED
@@ -4,4 +4,5 @@
|
|
4 |
.vscode/
|
5 |
.venv/
|
6 |
documents/
|
7 |
-
APIs
|
|
|
|
4 |
.vscode/
|
5 |
.venv/
|
6 |
documents/
|
7 |
+
APIs/__pycache__
|
8 |
+
weather_data.json
|
APIs/meteo.py
CHANGED
@@ -10,26 +10,7 @@ retry_session = retry(cache_session, retries=5, backoff_factor=0.2)
|
|
10 |
openmeteo = openmeteo_requests.Client(session=retry_session)
|
11 |
|
12 |
|
13 |
-
def
|
14 |
-
"""Function that creates a Json file containing the weather data of the location
|
15 |
-
ARGS:
|
16 |
-
latitude (Float) : latitude coordinate
|
17 |
-
longitude (Float): longitude coordinate
|
18 |
-
|
19 |
-
"""
|
20 |
-
url = "https://api.open-meteo.com/v1/forecast"
|
21 |
-
params = {
|
22 |
-
"latitude": latitude,
|
23 |
-
"longitude": longitude, # "cloud_cover_low", "cloud_cover_mid","cloud_cover_high"
|
24 |
-
"hourly": {"relative_humidity_2m", "soil_temperature_0cm", "soil_moisture_0_to_1cm", "cloud_cover"},
|
25 |
-
"daily": {"temperature_2m_max", "precipitation_sum", "wind_speed_10m_max", "sunshine_duration", "rain_sum"},
|
26 |
-
"past_days": 5,
|
27 |
-
"forecast_days": 7
|
28 |
-
|
29 |
-
}
|
30 |
-
responses = openmeteo.weather_api(url, params=params)
|
31 |
-
response = responses[0]
|
32 |
-
|
33 |
# Hourly dataframe
|
34 |
|
35 |
hourly = response.Hourly()
|
@@ -52,6 +33,8 @@ def get_info_meteo(latitude, longitude):
|
|
52 |
|
53 |
hourly_dataframe = pd.DataFrame(data=hourly_data)
|
54 |
|
|
|
|
|
55 |
hourly_dataframe = pd.DataFrame(data=hourly_data)
|
56 |
|
57 |
# Average hourly data per day
|
@@ -74,10 +57,13 @@ def get_info_meteo(latitude, longitude):
|
|
74 |
med_cloud_cover = tmp2.rename(
|
75 |
columns={'cloud_cover_%': 'med_cloud_cover_%'})
|
76 |
|
|
|
|
|
|
|
|
|
77 |
# Daily dataframe
|
78 |
daily = response.Daily()
|
79 |
daily_temperature_2m_max = daily.Variables(0).ValuesAsNumpy()
|
80 |
-
print(daily_temperature_2m_max)
|
81 |
daily_precipitation_sum = daily.Variables(1).ValuesAsNumpy()
|
82 |
daily_wind_speed_10m_max = daily.Variables(2).ValuesAsNumpy()
|
83 |
daily_sunshine_duration = daily.Variables(3).ValuesAsNumpy()
|
@@ -97,18 +83,51 @@ def get_info_meteo(latitude, longitude):
|
|
97 |
daily_data["daily_rain_sum_mm"] = daily_rain_sum
|
98 |
|
99 |
daily_dataframe = pd.DataFrame(data=daily_data)
|
|
|
100 |
|
101 |
daily_dataframe['day_date'] = daily_dataframe['date'].dt.strftime(
|
102 |
'%Y-%m-%d')
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
total_df = pd.merge(daily_dataframe, avg_hourly_dataframe,
|
105 |
on="day_date", how="left")
|
106 |
-
total_df = pd.merge(total_df, med_cloud_cover,
|
|
|
107 |
|
108 |
total_df['date'] = total_df['day_date']
|
109 |
total_df = total_df.drop('day_date', axis=1)
|
110 |
|
111 |
-
total_df.to_json("weather_data.json", orient='columns')
|
112 |
return total_df
|
113 |
|
114 |
|
|
|
10 |
openmeteo = openmeteo_requests.Client(session=retry_session)
|
11 |
|
12 |
|
13 |
+
def get_hourly_weather_data(response):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Hourly dataframe
|
15 |
|
16 |
hourly = response.Hourly()
|
|
|
33 |
|
34 |
hourly_dataframe = pd.DataFrame(data=hourly_data)
|
35 |
|
36 |
+
# print('hourly df', hourly_dataframe)
|
37 |
+
|
38 |
hourly_dataframe = pd.DataFrame(data=hourly_data)
|
39 |
|
40 |
# Average hourly data per day
|
|
|
57 |
med_cloud_cover = tmp2.rename(
|
58 |
columns={'cloud_cover_%': 'med_cloud_cover_%'})
|
59 |
|
60 |
+
return avg_hourly_dataframe, med_cloud_cover
|
61 |
+
|
62 |
+
|
63 |
+
def get_daily_weather_data(response):
|
64 |
# Daily dataframe
|
65 |
daily = response.Daily()
|
66 |
daily_temperature_2m_max = daily.Variables(0).ValuesAsNumpy()
|
|
|
67 |
daily_precipitation_sum = daily.Variables(1).ValuesAsNumpy()
|
68 |
daily_wind_speed_10m_max = daily.Variables(2).ValuesAsNumpy()
|
69 |
daily_sunshine_duration = daily.Variables(3).ValuesAsNumpy()
|
|
|
83 |
daily_data["daily_rain_sum_mm"] = daily_rain_sum
|
84 |
|
85 |
daily_dataframe = pd.DataFrame(data=daily_data)
|
86 |
+
# print('meteo_daily', daily_dataframe)
|
87 |
|
88 |
daily_dataframe['day_date'] = daily_dataframe['date'].dt.strftime(
|
89 |
'%Y-%m-%d')
|
90 |
|
91 |
+
return daily_dataframe
|
92 |
+
|
93 |
+
|
94 |
+
def get_info_meteo(latitude, longitude):
|
95 |
+
"""Function that creates a Json file containing the weather data of the location
|
96 |
+
ARGS:
|
97 |
+
latitude (Float) : latitude coordinate
|
98 |
+
longitude (Float): longitude coordinate
|
99 |
+
|
100 |
+
"""
|
101 |
+
url = "https://api.open-meteo.com/v1/forecast"
|
102 |
+
params = {
|
103 |
+
"latitude": latitude,
|
104 |
+
"longitude": longitude, # "cloud_cover_low", "cloud_cover_mid","cloud_cover_high"
|
105 |
+
"hourly": ["relative_humidity_2m", "soil_temperature_0cm", "soil_moisture_0_to_1cm", "cloud_cover"],
|
106 |
+
"daily": ["temperature_2m_max", "precipitation_sum", "wind_speed_10m_max", "sunshine_duration", "rain_sum"],
|
107 |
+
"past_days": 5,
|
108 |
+
"forecast_days": 7
|
109 |
+
|
110 |
+
}
|
111 |
+
responses = openmeteo.weather_api(url, params=params)
|
112 |
+
response = responses[0]
|
113 |
+
|
114 |
+
print(f"Coordinates {response.Latitude()}°N {response.Longitude()}°E")
|
115 |
+
print(f"Elevation {response.Elevation()} m asl")
|
116 |
+
print(f"Timezone {response.Timezone()} {response.TimezoneAbbreviation()}")
|
117 |
+
print(f"Timezone difference to GMT+0 {response.UtcOffsetSeconds()} s")
|
118 |
+
|
119 |
+
avg_hourly_dataframe, med_cloud_cover = get_hourly_weather_data(response)
|
120 |
+
daily_dataframe = get_daily_weather_data(response)
|
121 |
+
|
122 |
total_df = pd.merge(daily_dataframe, avg_hourly_dataframe,
|
123 |
on="day_date", how="left")
|
124 |
+
total_df = pd.merge(total_df, med_cloud_cover,
|
125 |
+
on="day_date", how="left")
|
126 |
|
127 |
total_df['date'] = total_df['day_date']
|
128 |
total_df = total_df.drop('day_date', axis=1)
|
129 |
|
130 |
+
# total_df.to_json("weather_data.json", orient='columns')
|
131 |
return total_df
|
132 |
|
133 |
|