|
import os |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
from huggingface_hub import ( |
|
CommitOperationAdd, |
|
EvalResult, |
|
ModelCard, |
|
RepoUrl, |
|
create_commit, |
|
) |
|
from huggingface_hub.repocard_data import eval_results_to_model_index |
|
from pytablewriter import MarkdownTableWriter |
|
|
|
from openllm import get_datas, get_json_format_data |
|
|
|
BOT_HF_TOKEN = os.getenv("BOT_HF_TOKEN") |
|
|
|
|
|
def search(df, value): |
|
result_df = df[df["Model"] == value] |
|
return result_df.iloc[0].to_dict() if not result_df.empty else None |
|
|
|
|
|
def get_details_url(repo): |
|
author, model = repo.split("/") |
|
return f"https://huggingface.co/datasets/open-llm-leaderboard/{author}__{model}-details" |
|
|
|
|
|
def get_query_url(repo): |
|
return f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query={repo}" |
|
|
|
|
|
def get_task_summary(results): |
|
return { |
|
"IFEval": { |
|
"dataset_type": "HuggingFaceH4/ifeval", |
|
"dataset_name": "IFEval (0-Shot)", |
|
"metric_type": "inst_level_strict_acc and prompt_level_strict_acc", |
|
"metric_value": results["IFEval"], |
|
"dataset_config": None, |
|
"dataset_split": None, |
|
"dataset_revision": None, |
|
"dataset_args": {"num_few_shot": 0}, |
|
"metric_name": "strict accuracy", |
|
}, |
|
"BBH": { |
|
"dataset_type": "BBH", |
|
"dataset_name": "BBH (3-Shot)", |
|
"metric_type": "acc_norm", |
|
"metric_value": results["BBH"], |
|
"dataset_config": None, |
|
"dataset_split": None, |
|
"dataset_revision": None, |
|
"dataset_args": {"num_few_shot": 3}, |
|
"metric_name": "normalized accuracy", |
|
}, |
|
"MATH Lvl 5": { |
|
"dataset_type": "hendrycks/competition_math", |
|
"dataset_name": "MATH Lvl 5 (4-Shot)", |
|
"metric_type": "exact_match", |
|
"metric_value": results["MATH Lvl 5"], |
|
"dataset_config": None, |
|
"dataset_split": None, |
|
"dataset_revision": None, |
|
"dataset_args": {"num_few_shot": 4}, |
|
"metric_name": "exact match", |
|
}, |
|
"GPQA": { |
|
"dataset_type": "Idavidrein/gpqa", |
|
"dataset_name": "GPQA (0-shot)", |
|
"metric_type": "acc_norm", |
|
"metric_value": results["GPQA"], |
|
"dataset_config": None, |
|
"dataset_split": None, |
|
"dataset_revision": None, |
|
"dataset_args": {"num_few_shot": 0}, |
|
"metric_name": "acc_norm", |
|
}, |
|
"MuSR": { |
|
"dataset_type": "TAUR-Lab/MuSR", |
|
"dataset_name": "MuSR (0-shot)", |
|
"metric_type": "acc_norm", |
|
"metric_value": results["MUSR"], |
|
"dataset_config": None, |
|
"dataset_split": None, |
|
"dataset_args": {"num_few_shot": 0}, |
|
"metric_name": "acc_norm", |
|
}, |
|
"MMLU-PRO": { |
|
"dataset_type": "TIGER-Lab/MMLU-Pro", |
|
"dataset_name": "MMLU-PRO (5-shot)", |
|
"metric_type": "acc", |
|
"metric_value": results["MMLU-PRO"], |
|
"dataset_config": "main", |
|
"dataset_split": "test", |
|
"dataset_args": {"num_few_shot": 5}, |
|
"metric_name": "accuracy", |
|
}, |
|
} |
|
|
|
|
|
def get_eval_results(df, repo): |
|
results = search(df, repo) |
|
task_summary = get_task_summary(results) |
|
md_writer = MarkdownTableWriter() |
|
md_writer.headers = ["Metric", "Value"] |
|
md_writer.value_matrix = [["Avg.", results["Average β¬οΈ"]]] + [ |
|
[v["dataset_name"], v["metric_value"]] for v in task_summary.values() |
|
] |
|
|
|
text = f""" |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here]({get_details_url(repo)}) |
|
|
|
{md_writer.dumps()} |
|
""" |
|
return text |
|
|
|
|
|
def get_edited_yaml_readme(df, repo, token: str | None): |
|
card = ModelCard.load(repo, token=token) |
|
results = search(df, repo) |
|
|
|
common = { |
|
"task_type": "text-generation", |
|
"task_name": "Text Generation", |
|
"source_name": "Open LLM Leaderboard", |
|
"source_url": f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query={repo}", |
|
} |
|
|
|
tasks_results = get_task_summary(results) |
|
|
|
if not card.data[ |
|
"eval_results" |
|
]: |
|
card.data["model-index"] = eval_results_to_model_index( |
|
repo.split("/")[1], |
|
[EvalResult(**task, **common) for task in tasks_results.values()], |
|
) |
|
else: |
|
for task in tasks_results.values(): |
|
cur_result = EvalResult(**task, **common) |
|
if any( |
|
result.is_equal_except_value(cur_result) |
|
for result in card.data["eval_results"] |
|
): |
|
continue |
|
card.data["eval_results"].append(cur_result) |
|
|
|
return str(card) |
|
|
|
|
|
def commit( |
|
repo, |
|
pr_number=None, |
|
message="Adding Evaluation Results", |
|
oauth_token: gr.OAuthToken | None = None, |
|
): |
|
data = get_json_format_data() |
|
finished_models = get_datas(data) |
|
df = pd.DataFrame(finished_models) |
|
|
|
desc = """ |
|
This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr |
|
|
|
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card. |
|
|
|
Please report any issues here: https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions |
|
""" |
|
|
|
if not oauth_token: |
|
raise gr.Warning( |
|
"You are not logged in. Click on 'Sign in with Huggingface' to log in." |
|
) |
|
else: |
|
token = oauth_token |
|
|
|
if repo.startswith("https://huggingface.co/"): |
|
try: |
|
repo = RepoUrl(repo).repo_id |
|
except Exception: |
|
raise gr.Error(f"Not a valid repo id: {str(repo)}") |
|
|
|
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True} |
|
|
|
try: |
|
try: |
|
readme_text = get_edited_yaml_readme( |
|
df, repo, token=token |
|
) + get_eval_results(df, repo) |
|
except Exception as e: |
|
if "Repo card metadata block was not found." in str(e): |
|
readme_text = get_edited_yaml_readme(df, repo, token=token) |
|
else: |
|
print(f"Something went wrong: {e}") |
|
|
|
liste = [ |
|
CommitOperationAdd( |
|
path_in_repo="README.md", path_or_fileobj=readme_text.encode() |
|
) |
|
] |
|
commit = create_commit( |
|
repo_id=repo, |
|
token=token, |
|
operations=liste, |
|
commit_message=message, |
|
commit_description=desc, |
|
repo_type="model", |
|
**edited, |
|
).pr_url |
|
|
|
return commit |
|
|
|
except Exception as e: |
|
if "Discussions are disabled for this repo" in str(e): |
|
return "Discussions disabled" |
|
elif "Cannot access gated repo" in str(e): |
|
return "Gated repo" |
|
elif "Repository Not Found" in str(e): |
|
return "Repository Not Found" |
|
else: |
|
return e |
|
|