Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,49 @@
|
|
1 |
import torch
|
2 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
3 |
-
|
4 |
import streamlit as st
|
5 |
|
6 |
# Load the tokenizer and model
|
7 |
tokenizer = GPT2Tokenizer.from_pretrained('webtoon_tokenizer')
|
8 |
model = GPT2LMHeadModel.from_pretrained('webtoon_model')
|
9 |
|
10 |
-
|
11 |
-
# Define the app
|
12 |
-
def main():
|
13 |
-
st.title('Webtoon Description Generator')
|
14 |
-
|
15 |
-
# Get the input from the user
|
16 |
-
title = st.text_input('Enter the title of the Webtoon:', '')
|
17 |
-
|
18 |
-
# Generate the description
|
19 |
-
if st.button('Generate Description'):
|
20 |
-
with st.spinner('Generating...'):
|
21 |
-
description = generate_description(title)
|
22 |
-
st.success(description)
|
23 |
-
|
24 |
# Check if GPU is available
|
25 |
-
if torch.cuda.is_available()
|
26 |
-
|
27 |
-
else:
|
28 |
-
device = torch.device("cpu")
|
29 |
|
30 |
# Define the function that generates the description
|
31 |
def generate_description(title):
|
32 |
# Preprocess the input
|
33 |
input_text = f"{title}"
|
34 |
input_ids = tokenizer.encode(input_text, return_tensors='pt').to(device)
|
|
|
35 |
|
36 |
# Generate the output using the model
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
|
45 |
# Convert the output to text
|
46 |
description = tokenizer.decode(output[0], skip_special_tokens=True)
|
47 |
-
|
48 |
return description
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
if __name__ == '__main__':
|
52 |
-
main()
|
|
|
1 |
import torch
|
2 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
|
|
3 |
import streamlit as st
|
4 |
|
5 |
# Load the tokenizer and model
|
6 |
tokenizer = GPT2Tokenizer.from_pretrained('webtoon_tokenizer')
|
7 |
model = GPT2LMHeadModel.from_pretrained('webtoon_model')
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Check if GPU is available
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
model.to(device)
|
|
|
|
|
12 |
|
13 |
# Define the function that generates the description
|
14 |
def generate_description(title):
|
15 |
# Preprocess the input
|
16 |
input_text = f"{title}"
|
17 |
input_ids = tokenizer.encode(input_text, return_tensors='pt').to(device)
|
18 |
+
attention_mask = (input_ids != tokenizer.pad_token_id).long().to(device)
|
19 |
|
20 |
# Generate the output using the model
|
21 |
+
with torch.no_grad(): # Disable gradient calculation for inference
|
22 |
+
output = model.generate(
|
23 |
+
input_ids=input_ids,
|
24 |
+
attention_mask=attention_mask, # Pass attention_mask to avoid warnings
|
25 |
+
max_length=100, # Reduce max_length for quicker inference
|
26 |
+
num_beams=2, # Reduce num_beams for quicker inference
|
27 |
+
early_stopping=True,
|
28 |
+
no_repeat_ngram_size=2
|
29 |
+
)
|
30 |
|
31 |
# Convert the output to text
|
32 |
description = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
33 |
return description
|
34 |
|
35 |
+
# Define the app
|
36 |
+
def main():
|
37 |
+
st.title('Webtoon Description Generator')
|
38 |
+
|
39 |
+
# Get the input from the user
|
40 |
+
title = st.text_input('Enter the title of the Webtoon:', '')
|
41 |
+
|
42 |
+
# Generate the description
|
43 |
+
if st.button('Generate Description'):
|
44 |
+
with st.spinner('Generating...'):
|
45 |
+
description = generate_description(title)
|
46 |
+
st.success(description)
|
47 |
|
48 |
if __name__ == '__main__':
|
49 |
+
main()
|