SyedUmairHasan's picture
Upload app,py.py
69acad8
raw
history blame
2.8 kB
import cv2
from cvzone.HandTrackingModule import HandDetector
from cvzone.ClassificationModule import Classifier
import numpy as np
import math
import gradio as gr
#cap = cv2.VideoCapture(0)
detector = HandDetector(maxHands=1)
classifier = Classifier("Model/keras_model.h5", "Model/labels.txt")
offset = 20
imgSize = 300
folder = "Data/C"
counter = 0
labels = ["A", "B"]
def sign(img):
#img = cv2.imread("sign.jpg")
imgOutput = cv2.flip(img.copy(),1)
hands, img = detector.findHands(cv2.flip(img[:,:,::-1],1))
if hands:
print('hand detected')
hand = hands[0]
x, y, w, h = hand['bbox']
imgWhite = np.ones((imgSize, imgSize, 3), np.uint8) * 255
imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset]
imgCropShape = imgCrop.shape
aspectRatio = h / w
if aspectRatio > 1:
k = imgSize / h
wCal = math.ceil(k * w)
imgResize = cv2.resize(imgCrop, (wCal, imgSize))
imgResizeShape = imgResize.shape
wGap = math.ceil((imgSize - wCal) / 2)
imgWhite[:, wGap:wCal + wGap] = imgResize
prediction, index = classifier.getPrediction(imgWhite, draw=False)
print(prediction, index)
else:
k = imgSize / w
hCal = math.ceil(k * h)
imgResize = cv2.resize(imgCrop, (imgSize, hCal))
imgResizeShape = imgResize.shape
hGap = math.ceil((imgSize - hCal) / 2)
imgWhite[hGap:hCal + hGap, :] = imgResize
prediction, index = classifier.getPrediction(imgWhite, draw=False)
cv2.rectangle(imgOutput, (x-offset, y-offset),
(x + w+offset, y + h+offset), (255, 0, 255), 4)
imgOutput = cv2.flip(imgOutput,1)
#cv2.rectangle(imgOutput, (x - offset, y - offset-50),
# (x - offset+90, y - offset-50+50), (255, 0, 255), cv2.FILLED)
#cv2.putText(imgOutput, labels[index], (x, y -26), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
cv2.rectangle(imgOutput, (30,30),
(80,80), (255, 0, 255), cv2.FILLED)
cv2.putText(imgOutput, labels[index], (30, 80), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
#cv2.imshow("ImageCrop", imgCrop)
#cv2.imshow("ImageWhite", imgWhite)
#cv2.imshow("Image", imgOutput)
return imgOutput
with gr.Blocks() as demo:
with gr.Tabs():
with gr.TabItem('Webcam'):
with gr.Row():
with gr.Column():
img_input2 = gr.Webcam()
image_button2 = gr.Button("Submit")
with gr.Column():
output2 = gr.outputs.Image()
image_button2.click(fn=sign,
inputs = img_input2,
outputs = output2)
demo.launch(debug=True)