Swayam14 commited on
Commit
7b9f961
·
verified ·
1 Parent(s): 7d3a281

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -9
app.py CHANGED
@@ -1,20 +1,36 @@
1
  import gradio as gr
2
  from transformers import pipeline
 
 
3
 
4
- # Load models
5
- classifier_env = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion") # Replace with your own if needed
6
- image_generator = pipeline("text-to-image", model="CompVis/stable-diffusion-v1-4")
 
 
 
 
 
7
  ner_model = pipeline("ner", grouped_entities=True)
 
 
8
  fill_mask = pipeline("fill-mask", model="roberta-large")
9
 
10
- # Functions
 
 
 
 
 
 
 
11
  def classify_environment(text):
12
  result = classifier_env(text)
13
  return result[0]['label'], result[0]['score']
14
 
15
  def generate_image(prompt):
16
- result = image_generator(prompt)
17
- return result[0]
18
 
19
  def ner_mapping(text):
20
  entities = ner_model(text)
@@ -24,9 +40,12 @@ def fill_masked_text(text):
24
  results = fill_mask(text)
25
  return "\n".join([r['sequence'] for r in results])
26
 
27
- # Gradio Interfaces
 
 
 
28
  with gr.Blocks() as demo:
29
- gr.Markdown("# 🌍 Multi-Model NLP + Image App (Hugging Face)")
30
 
31
  with gr.Tab("Sentence Classification (Environment)"):
32
  input_text = gr.Textbox(placeholder="Type a sentence about the environment...", lines=2)
@@ -53,5 +72,4 @@ with gr.Blocks() as demo:
53
  mask_btn = gr.Button("Fill Mask")
54
  mask_btn.click(fn=fill_masked_text, inputs=mask_input, outputs=mask_output)
55
 
56
- # Launch
57
  demo.launch()
 
1
  import gradio as gr
2
  from transformers import pipeline
3
+ from diffusers import StableDiffusionPipeline
4
+ import torch
5
 
6
+ # ==============================
7
+ # Load Pipelines
8
+ # ==============================
9
+
10
+ # Sentence classification (use a multi-class model if available)
11
+ classifier_env = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion") # You can fine-tune your own later
12
+
13
+ # NER pipeline
14
  ner_model = pipeline("ner", grouped_entities=True)
15
+
16
+ # Masked word fill
17
  fill_mask = pipeline("fill-mask", model="roberta-large")
18
 
19
+ # Stable Diffusion for image generation
20
+ pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float32)
21
+ pipe = pipe.to("cpu")
22
+
23
+ # ==============================
24
+ # Define Functions
25
+ # ==============================
26
+
27
  def classify_environment(text):
28
  result = classifier_env(text)
29
  return result[0]['label'], result[0]['score']
30
 
31
  def generate_image(prompt):
32
+ image = pipe(prompt).images[0]
33
+ return image
34
 
35
  def ner_mapping(text):
36
  entities = ner_model(text)
 
40
  results = fill_mask(text)
41
  return "\n".join([r['sequence'] for r in results])
42
 
43
+ # ==============================
44
+ # Gradio Interface
45
+ # ==============================
46
+
47
  with gr.Blocks() as demo:
48
+ gr.Markdown("# 🤖 Multi-Model NLP + Image Generator (Hugging Face Space)")
49
 
50
  with gr.Tab("Sentence Classification (Environment)"):
51
  input_text = gr.Textbox(placeholder="Type a sentence about the environment...", lines=2)
 
72
  mask_btn = gr.Button("Fill Mask")
73
  mask_btn.click(fn=fill_masked_text, inputs=mask_input, outputs=mask_output)
74
 
 
75
  demo.launch()